Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Sci Rep ; 14(1): 11241, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755246

RESUMO

Current density, the membrane current value divided by membrane capacitance (Cm), is widely used in cellular electrophysiology. Comparing current densities obtained in different cell populations assume that Cm and ion current magnitudes are linearly related, however data is scarce about this in cardiomyocytes. Therefore, we statistically analyzed the distributions, and the relationship between parameters of canine cardiac ion currents and Cm, and tested if dividing original parameters with Cm had any effect. Under conventional voltage clamp conditions, correlations were high for IK1, moderate for IKr and ICa,L, while negligible for IKs. Correlation between Ito1 peak amplitude and Cm was negligible when analyzing all cells together, however, the analysis showed high correlations when cells of subepicardial, subendocardial or midmyocardial origin were analyzed separately. In action potential voltage clamp experiments IK1, IKr and ICa,L parameters showed high correlations with Cm. For INCX, INa,late and IKs there were low-to-moderate correlations between Cm and these current parameters. Dividing the original current parameters with Cm reduced both the coefficient of variation, and the deviation from normal distribution. The level of correlation between ion currents and Cm varies depending on the ion current studied. This must be considered when evaluating ion current densities in cardiac cells.


Assuntos
Potenciais de Ação , Capacitância Elétrica , Ventrículos do Coração , Miócitos Cardíacos , Técnicas de Patch-Clamp , Animais , Cães , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Potenciais de Ação/fisiologia , Potenciais da Membrana/fisiologia , Canais Iônicos/metabolismo , Membrana Celular/metabolismo
2.
Biomedicines ; 11(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37760824

RESUMO

The present study was designed to test the hypothesis that the selectivity of blocking the late Na+ current (INaL) over the peak Na+ current (INaP) is related to the fast offset kinetics of the Na+ channel inhibitor. Therefore, the effects of 1 µM GS967 (INaL inhibitor), 20 µM mexiletine (I/B antiarrhythmic) and 10 µM quinidine (I/A antiarrhythmic) on INaL and INaP were compared in canine ventricular myocardium. INaP was estimated as the maximum velocity of action potential upstroke (V+max). Equal amounts of INaL were dissected by the applied drug concentrations under APVC conditions. The inhibition of INaL by mexiletine and quinidine was comparable under a conventional voltage clamp, while both were smaller than the inhibitory effect of GS967. Under steady-state conditions, the V+max block at the physiological cycle length of 700 ms was 2.3% for GS967, 11.4% for mexiletine and 26.2% for quinidine. The respective offset time constants were 110 ± 6 ms, 456 ± 284 ms and 7.2 ± 0.9 s. These results reveal an inverse relationship between the offset time constant and the selectivity of INaL over INaP inhibition without any influence of the onset rate constant. It is concluded that the selective inhibition of INaL over INaP is related to the fast offset kinetics of the Na+ channel inhibitor.

3.
Aging Cell ; 22(9): e13939, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37489544

RESUMO

Slow inward currents (SICs) are known as excitatory events of neurons elicited by astrocytic glutamate via activation of extrasynaptic NMDA receptors. By using slice electrophysiology, we tried to provide evidence that SICs can elicit synaptic plasticity. Age dependence of SICs and their impact on synaptic plasticity was also investigated in both on murine and human cortical slices. It was found that SICs can induce a moderate synaptic plasticity, with features similar to spike timing-dependent plasticity. Overall SIC activity showed a clear decline with aging in humans and completely disappeared above a cutoff age. In conclusion, while SICs contribute to a form of astrocyte-dependent synaptic plasticity both in mice and humans, this plasticity is differentially affected by aging. Thus, SICs are likely to play an important role in age-dependent physiological and pathological alterations of synaptic plasticity.


Assuntos
Astrócitos , Neocórtex , Camundongos , Humanos , Animais , Astrócitos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Neocórtex/metabolismo , Neurônios/metabolismo , Plasticidade Neuronal , Sinapses/metabolismo
4.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37111245

RESUMO

ABT-333 (dasabuvir) is an antiviral agent used in hepatitis C treatment. The molecule, similarly to some inhibitors of hERG channels, responsible for the delayed rectifier potassium current (IKr), contains the methanesulfonamide group. Reduced IKr current leads to long QT syndrome and early afterdepolarizations (EADs), therefore potentially causing life-threatening arrhythmias and sudden cardiac death. Our goal was to investigate the acute effects of ABT-333 in enzymatically isolated canine left ventricular myocardial cells. Action potentials (APs) and ion currents were recorded with a sharp microelectrode technique and whole-cell patch clamp, respectively. Application of 1 µM ABT-333 prolonged the AP in a reversible manner. The maximal rates of phases 0 and 1 were irreversibly decreased. Higher ABT-333 concentrations caused larger AP prolongation, elevation of the early plateau potential, and reduction of maximal rates of phases 0, 1, and 3. EADs occurred in some cells in 3-30 µM ABT-333 concentrations. The 10 µM ABT-333-sensitive current, recorded with AP voltage clamp, contained a late outward component corresponding to IKr and an early outward one corresponding to transient outward potassium current (Ito). ABT-333 reduced hERG-channel-mediated ion current in a concentration-dependent, partially reversible manner with a half-inhibitory concentration of 3.2 µM. As the therapeutic plasma concentration of ABT-333 is 1 nM, the arrhythmic risk of ABT-333 is very low, even in the case of drug overdose.

5.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37111317

RESUMO

Late sodium current (INa,late) is an important inward current contributing to the plateau phase of the action potential (AP) in the mammalian heart. Although INa,late is considered as a possible target for antiarrhythmic agents, several aspects of this current remained hidden. In this work, the profile of INa,late, together with the respective conductance changes (GNa,late), were studied and compared in rabbit, canine, and guinea pig ventricular myocytes using the action potential voltage clamp (APVC) technique. In canine and rabbit myocytes, the density of INa,late was relatively stable during the plateau and decreased only along terminal repolarization of the AP, while GNa,late decreased monotonically. In contrast, INa,late increased monotonically, while GNa,late remained largely unchanged during the AP in guinea pig. The estimated slow inactivation of Na+ channels was much slower in guinea pig than in canine or rabbit myocytes. The characteristics of canine INa,late and GNa,late were not altered by using command APs recorded from rabbit or guinea pig myocytes, indicating that the different shapes of the current profiles are related to genuine interspecies differences in the gating of INa,late. Both INa,late and GNa,late decreased in canine myocytes when the intracellular Ca2+ concentration was reduced either by the extracellular application of 1 µM nisoldipine or by the intracellular application of BAPTA. Finally, a comparison of the INa,late and GNa,late profiles induced by the toxin of Anemonia sulcata (ATX-II) in canine and guinea pig myocytes revealed profound differences between the two species: in dog, the ATX-II induced INa,late and GNa,late showed kinetics similar to those observed with the native current, while in guinea pig, the ATX-II induced GNa,late increased during the AP. Our results show that there are notable interspecies differences in the gating kinetics of INa,late that cannot be explained by differences in AP morphology. These differences must be considered when interpreting the INa,late results obtained in guinea pig.

6.
ESC Heart Fail ; 10(2): 1326-1335, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36722665

RESUMO

AIMS: Heart failure with reduced ejection fraction (HFrEF) is a disease with high mortality and morbidity. Recent positive inotropic drug developments focused on cardiac myofilaments, that is, direct activators of the myosin molecule and Ca2+ sensitizers for patients with advanced HFrEF. Omecamtiv mecarbil (OM) is the first direct myosin activator with promising results in clinical studies. Here, we aimed to elucidate the cellular mechanisms of the positive inotropic effect of OM in a comparative in vitro investigation where Ca2+ -sensitizing positive inotropic agents with distinct mechanisms of action [EMD 53998 (EMD), which also docks on the myosin molecule, and levosimendan (Levo), which binds to troponin C] were included. METHODS: Enzymatically isolated canine cardiomyocytes with intact cell membranes were loaded with Fura-2AM, a Ca2+ -sensitive, ratiometric, fluorescent dye. Changes in sarcomere length (SL) and intracellular Ca2+ concentration were recorded in parallel at room temperature, whereas cardiomyocyte contractions were evoked by field stimulation at 0.1 Hz in the presence of different OM, EMD, or Levo concentrations. RESULTS: SL was reduced by about 23% or 9% in the presence of 1 µM OM or 1 µM EMD in the absence of electrical stimulation, whereas 1 µM Levo had no effect on resting SL. Fractional sarcomere shortening was increased by 1 µM EMD or 1 µM Levo to about 152%, but only to about 128% in the presence of 0.03 µM OM. At higher OM concentrations, no significant increase in fractional sarcomere shortening could be recorded. Contraction durations largely increased, whereas the kinetics of contractions and relaxations decreased with increasing OM concentrations. One-micromole EMD or 1 µM Levo had no effects on contraction durations. One-micromole Levo, but not 1 µM EMD, accelerated the kinetics of cardiomyocyte contractions and relaxations. Ca2+ transient amplitudes were unaffected by all treatments. CONCLUSIONS: Our data revealed major distinctions between the cellular effects of myofilament targeted agents (OM, EMD, or Levo) depending on their target proteins and binding sites, although they were compatible with the involvement of Ca2+ -sensitizing mechanisms for all three drugs. Significant part of the cardiotonic effect of OM relates to the prolongation of systolic contraction in combination with its Ca2+ -sensitizing effect.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Animais , Cães , Miócitos Cardíacos/metabolismo , Volume Sistólico , Simendana/farmacologia , Miosinas
7.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36498977

RESUMO

Life-long stable heart function requires a critical balance of intracellular Ca2+. Several ion channels and pumps cooperate in a complex machinery that controls the influx, release, and efflux of Ca2+. Probably one of the most interesting and most complex players of this crosstalk is the Na+/Ca2+ exchanger, which represents the main Ca2+ efflux mechanism; however, under some circumstances, it can also bring Ca2+ into the cell. Therefore, the inhibition of the Na+/Ca2+ exchanger has emerged as one of the most promising possible pharmacological targets to increase Ca2+ levels, to decrease arrhythmogenic depolarizations, and to reduce excessive Ca2+ influx. In line with this, as a response to increasing demand, several more or less selective Na+/Ca2+ exchanger inhibitor compounds have been developed. In the past 20 years, several results have been published regarding the effect of Na+/Ca2+ exchanger inhibition under various circumstances, e.g., species, inhibitor compounds, and experimental conditions; however, the results are often controversial. Does selective Na+/Ca2+ exchanger inhibition have any future in clinical pharmacological practice? In this review, the experimental results of Na+/Ca2+ exchanger inhibition are summarized focusing on the data obtained by novel highly selective inhibitors.


Assuntos
Antiarrítmicos , Trocador de Sódio e Cálcio , Humanos , Trocador de Sódio e Cálcio/metabolismo , Antiarrítmicos/farmacologia , Canais Iônicos/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Transporte Biológico/fisiologia , Cálcio/metabolismo
8.
Sci Rep ; 12(1): 8087, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577872

RESUMO

Doxorubicin (Dox), a widely used anticancer DNA-binding drug, affects chromatin in multiple ways, and these effects contribute to both its efficacy and its dose-limiting side effects, especially cardiotoxicity. Here, we studied the effects of Dox on the chromatin binding of the architectural proteins high mobility group B1 (HMGB1) and the linker histone H1, and the transcription factor retinoic acid receptor (RARα) by fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) in live cells. At lower doses, Dox increased the binding of HMGB1 to DNA while decreasing the binding of the linker histone H1. At higher doses that correspond to the peak plasma concentrations achieved during chemotherapy, Dox reduced the binding of HMGB1 as well. This biphasic effect is interpreted in terms of a hierarchy of competition between the ligands involved and Dox-induced local conformational changes of nucleosome-free DNA. Combined, FRAP and FCS mobility data suggest that Dox decreases the overall binding of RARα to DNA, an effect that was only partially overcome by agonist binding. The intertwined interactions described are likely to contribute to both the effects and side effects of Dox.


Assuntos
Proteína HMGB1 , Histonas , Cromatina , DNA , Doxorrubicina/farmacologia , Proteína HMGB1/metabolismo , Histonas/metabolismo , Receptores do Ácido Retinoico/metabolismo
9.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457253

RESUMO

Cardiac diseases are the leading causes of death, with a growing number of cases worldwide, posing a challenge for both healthcare and research. Therefore, the most relevant aim of cardiac research is to unravel the molecular pathomechanisms and identify new therapeutic targets. Cardiac ryanodine receptor (RyR2), the Ca2+ release channel of the sarcoplasmic reticulum, is believed to be a good therapeutic target in a group of certain heart diseases, collectively called cardiac ryanopathies. Ryanopathies are associated with the impaired function of the RyR, leading to heart diseases such as congestive heart failure (CHF), catecholaminergic polymorphic ventricular tachycardia (CPVT), arrhythmogenic right ventricular dysplasia type 2 (ARVD2), and calcium release deficiency syndrome (CRDS). The aim of the current review is to provide a short insight into the pathological mechanisms of ryanopathies and discuss the pharmacological approaches targeting RyR2.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Taquicardia Ventricular , Displasia Arritmogênica Ventricular Direita , Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/terapia
10.
Front Physiol ; 13: 864002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370800

RESUMO

The patch clamp technique underwent continual advancement and developed numerous variants in cardiac electrophysiology since its introduction in the late 1970s. In the beginning, the capability of the technique was limited to recording one single current from one cell stimulated with a rectangular command pulse. Since that time, the technique has been extended to record multiple currents under various command pulses including action potential. The current review summarizes the development of the patch clamp technique in cardiac electrophysiology with special focus on the potential applications in integrative physiology.

11.
Arch Biochem Biophys ; 722: 109184, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35395253

RESUMO

The roles and molecular interactions of polyamines (PAs) in the nucleus are not fully understood. Here their effect on nucleosome stability, a key regulatory factor in eukaryotic gene control, is reported, as measured in agarose embedded nuclei of H2B-GFP expressor HeLa cells. Nucleosome stability was assessed by quantitative microscopy [1,2] in situ, in close to native state of chromatin, preserving the nucleosome constrained topology of the genomic DNA. A robust destabilizing effect was observed in the millimolar concentration range in the case of spermine, spermidine as well as putrescine, which was strongly pH and salt concentration-dependent, and remained significant also at neutral pH. The integrity of genomic DNA was not affected by PA treatment, excluding DNA break-elicited topological relaxation as a factor in destabilization. The binding of PAs to DNA was demonstrated by the displacement of ethidium bromide, both from deproteinized nuclear halos and from plasmid DNA. The possibility that DNA methylation patterns may be influenced by PA levels is contemplated in the context of gene expression and DNA methylation correlations identified in the NCI-60 panel-based CellMiner database: methylated loci in subsets of high-ODC1 cell lines and the dependence of PER3 DNA methylation on PA metabolism.


Assuntos
Nucleossomos , Poliaminas , DNA/química , Células HeLa , Humanos , Poliaminas/metabolismo , Putrescina/metabolismo , Espermidina/química , Espermidina/metabolismo
12.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35215342

RESUMO

Late sodium current has long been linked to dysrhythmia and contractile malfunction in the heart. Despite the increasing body of accumulating information on the subject, our understanding of its role in normal or pathologic states is not complete. Even though the role of late sodium current in shaping action potential under physiologic circumstances is debated, it's unquestioned role in arrhythmogenesis keeps it in the focus of research. Transgenic mouse models and isoform-specific pharmacological tools have proved useful in understanding the mechanism of late sodium current in health and disease. This review will outline the mechanism and function of cardiac late sodium current with special focus on the recent advances of the area.

13.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055102

RESUMO

Astaxanthin is a lipid-soluble carotenoid influencing lipid metabolism, body weight, and insulin sensitivity. We provide a systematic analysis of acute and chronic effects of astaxanthin on different organs. Changes by chronic astaxanthin feeding were analyzed on general metabolism, expression of regulatory proteins in the skeletal muscle, as well as changes of excitation and synaptic activity in the hypothalamic arcuate nucleus of mice. Acute responses were also tested on canine cardiac muscle and different neuronal populations of the hypothalamic arcuate nucleus in mice. Dietary astaxanthin significantly increased food intake. It also increased protein levels affecting glucose metabolism and fatty acid biosynthesis in skeletal muscle. Inhibitory inputs innervating neurons of the arcuate nucleus regulating metabolism and food intake were strengthened by both acute and chronic astaxanthin treatment. Astaxanthin moderately shortened cardiac action potentials, depressed their plateau potential, and reduced the maximal rate of depolarization. Based on its complex actions on metabolism and food intake, our data support the previous findings that astaxanthin is suitable for supplementing the diet of patients with disturbances in energy homeostasis.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Anabolizantes/farmacologia , Metabolismo Energético/efeitos dos fármacos , Animais , Cães , Ingestão de Alimentos/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Xantofilas/farmacologia
14.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35056138

RESUMO

Transient receptor potential melastatin 4 is a unique member of the TRPM protein family and, similarly to TRPM5, is Ca2+-sensitive and permeable to monovalent but not divalent cations. It is widely expressed in many organs and is involved in several functions by regulating the membrane potential and Ca2+ homeostasis in both excitable and non-excitable cells. This part of the review discusses the pharmacological modulation of TRPM4 by listing, comparing, and describing both endogenous and exogenous activators and inhibitors of the ion channel. Moreover, other strategies used to study TRPM4 functions are listed and described. These strategies include siRNA-mediated silencing of TRPM4, dominant-negative TRPM4 variants, and anti-TRPM4 antibodies. TRPM4 is receiving more and more attention and is likely to be the topic of research in the future.

15.
Exp Dermatol ; 31(5): 807-813, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35038353

RESUMO

TRPV3 (transient receptor potential vanilloid 3) is a pro-inflammatory ion channel mostly expressed by keratinocytes of the human skin. Previous studies have shown that the expression of TRPV3 is markedly upregulated in the lesional epidermis of atopic dermatitis (AD) patients suggesting a potential pathogenetic role of the ion channel in the disease. In the current study, we aimed at defining the molecular and functional expression of TRPV3 in non-lesional skin of AD patients as previous studies implicated that healthy-appearing skin in AD is markedly distinct from normal skin with respect to terminal differentiation and certain immune function abnormalities. By using multiple, complementary immunolabelling and RT-qPCR technologies on full-thickness and epidermal shave biopsy samples from AD patients (lesional, non-lesional) and healthy volunteers, we provide the first evidence that the expression of TRPV3 is markedly upregulated in non-lesional human AD epidermis, similar to lesional AD samples. Of further importance, by using the patch-clamp method on cultured healthy and non-lesional AD keratinocytes, we also show that this upregulation is functional as determined by the significantly augmented TRPV3-specific ion current (induced by agonists) on cultured non-lesional AD keratinocytes when compared to healthy ones.


Assuntos
Dermatite Atópica , Dermatite Atópica/metabolismo , Epiderme/metabolismo , Humanos , Queratinócitos/metabolismo , Pele/metabolismo , Regulação para Cima
16.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36613900

RESUMO

Recent cardiotropic drug developments have focused on cardiac myofilaments. Danicamtiv, the second direct myosin activator, has achieved encouraging results in preclinical and clinical studies, thus implicating its potential applicability in the treatment of heart failure with reduced ejection fraction (HFrEF). Here, we analyzed the inotropic effects of danicamtiv in detail. To this end, changes in sarcomere length and intracellular Ca2+ levels were monitored in parallel, in enzymatically isolated canine cardiomyocytes, and detailed echocardiographic examinations were performed in anesthetized rats in the absence or presence of danicamtiv. The systolic and diastolic sarcomere lengths decreased; contraction and relaxation kinetics slowed down with increasing danicamtiv concentrations without changes in intracellular Ca2+ transients in vitro. Danicamtiv evoked remarkable increases in left ventricular ejection fraction and fractional shortening, also reflected by changes in systolic strain. Nevertheless, the systolic ejection time was significantly prolonged, the ratio of diastolic to systolic duration was reduced, and signs of diastolic dysfunction were also observed upon danicamtiv treatment in vivo. Taken together, danicamtiv improves cardiac systolic function, but it can also limit diastolic performance, especially at high drug concentrations.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Animais , Cães , Ratos , Função Ventricular Esquerda , Volume Sistólico , Miosinas Cardíacas , Diástole , Cardiomiopatias/tratamento farmacológico , Cardiotônicos/farmacologia , Miócitos Cardíacos
17.
Life (Basel) ; 11(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34947827

RESUMO

We studied the effect of different magnitudes (7000 PSI (48.26 MPa), 8000 PSI (55.16 MPa), and 9000 PSI (62.05 MPa)) of hydrostatic pressure on the ploidy of pikeperch larvae. Pressure shock was applied 5 min after the fertilization of eggs at a water temperature of 14.8 ± 1 °C. A 7000 PSI pressure shock was applied for 10 or 20 min, while 8000 and 9000 PSI treatments lasted for 10 min. Each treatment with its respective control was completed in triplicate, where different females' eggs served as a replicate. In the treatment groups exposed to 7000 PSI for 10 min, only diploid and triploid larvae were identified, while 2n/3n mosaic individuals were found after a 20-min exposure to a 7000 PSI pressure shock. The application of 8000 or 9000 PSI pressure shocks resulted in only triploid and mosaic individuals. Among larvae from eggs treated with 8000 PSI, three mosaic individuals with 2n/3n karyotype were identified (4.0 ± 6.9%), while a single (2.0 ± 3.5%) 1n/3n mosaic individual was found in the 9000 PSI-treated group. To our knowledge, this is the first report that demonstrates the induction of a haplo-triploid karyotype by hydrostatic pressure shock in teleost fish. The dominance of triploid individuals with a reasonable survival rate (36.8 ± 26.1%) after 8000 PSI shock supports the suitability of the hydrostatic pressure treatment of freshly fertilized eggs for triploid induction in pikeperch.

18.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34832924

RESUMO

Enhancement of the late sodium current (INaL) increases arrhythmia propensity in the heart, whereas suppression of the current is antiarrhythmic. In the present study, we investigated INaL in canine ventricular cardiomyocytes under action potential voltage-clamp conditions using the selective Na+ channel inhibitors GS967 and tetrodotoxin. Both 1 µM GS967 and 10 µM tetrodotoxin dissected largely similar inward currents. The amplitude and integral of the GS967-sensitive current was significantly smaller after the reduction of intracellular Ca2+ concentration ([Ca2+]i) either by superfusion of the cells with 1 µM nisoldipine or by intracellular application of 10 mM BAPTA. Inhibiting calcium/calmodulin-dependent protein kinase II (CaMKII) by KN-93 or the autocamtide-2-related inhibitor peptide similarly reduced the amplitude and integral of INaL. Action potential duration was shortened in a reverse rate-dependent manner and the plateau potential was depressed by GS967. This GS967-induced depression of plateau was reduced by pretreatment of the cells with BAPTA-AM. We conclude that (1) INaL depends on the magnitude of [Ca2+]i in canine ventricular cells, (2) this [Ca2+]i-dependence of INaL is mediated by the Ca2+-dependent activation of CaMKII, and (3) INaL is augmented by the baseline CaMKII activity.

19.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502410

RESUMO

Transient receptor potential melastatin 4 (TRPM4) plays an important role in many tissues, including pacemaker and conductive tissues of the heart, but much less is known about its electrophysiological role in ventricular myocytes. Our earlier results showed the lack of selectivity of 9-phenanthrol, so CBA ((4-chloro-2-(2-chlorophenoxy)acetamido) benzoic acid) was chosen as a new, potentially selective inhibitor. Goal: Our aim was to elucidate the effect and selectivity of CBA in canine left ventricular cardiomyocytes and to study the expression of TRPM4 in the canine heart. Experiments were carried out in enzymatically isolated canine left ventricular cardiomyocytes. Ionic currents were recorded with an action potential (AP) voltage-clamp technique in whole-cell configuration at 37 °C. An amount of 10 mM BAPTA was used in the pipette solution to exclude the potential activation of TRPM4 channels. AP was recorded with conventional sharp microelectrodes. CBA was used in 10 µM concentrations. Expression of TRPM4 protein in the heart was studied by Western blot. TRPM4 protein was expressed in the wall of all four chambers of the canine heart as well as in samples prepared from isolated left ventricular cells. CBA induced an approximately 9% reduction in AP duration measured at 75% and 90% of repolarization and decreased the short-term variability of APD90. Moreover, AP amplitude was increased and the maximal rates of phase 0 and 1 were reduced by the drug. In AP clamp measurements, CBA-sensitive current contained a short, early outward and mainly a long, inward current. Transient outward potassium current (Ito) and late sodium current (INa,L) were reduced by approximately 20% and 47%, respectively, in the presence of CBA, while L-type calcium and inward rectifier potassium currents were not affected. These effects of CBA were largely reversible upon washout. Based on our results, the CBA induced reduction of phase-1 slope and the slight increase of AP amplitude could have been due to the inhibition of Ito. The tendency for AP shortening can be explained by the inhibition of inward currents seen in AP-clamp recordings during the plateau phase. This inward current reduced by CBA is possibly INa,L, therefore, CBA is not entirely selective for TRPM4 channels. As a consequence, similarly to 9-phenanthrol, it cannot be used to test the contribution of TRPM4 channels to cardiac electrophysiology in ventricular cells, or at least caution must be applied.


Assuntos
Canais de Cátion TRPM/metabolismo , Função Ventricular/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Ácido Benzoico/farmacologia , Cálcio/metabolismo , Eletrofisiologia Cardíaca , Cães , Fenômenos Eletrofisiológicos , Feminino , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/patologia , Masculino , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Potássio/metabolismo , Sódio/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/fisiologia
20.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34451845

RESUMO

Due to the limited availability of healthy human ventricular tissues, the most suitable animal model has to be applied for electrophysiological and pharmacological studies. This can be best identified by studying the properties of ion currents shaping the action potential in the frequently used laboratory animals, such as dogs, rabbits, guinea pigs, or rats, and comparing them to those of human cardiomyocytes. The authors of this article with the experience of three decades of electrophysiological studies, performed in mammalian and human ventricular tissues and isolated cardiomyocytes, summarize their results obtained regarding the major canine and human cardiac ion currents. Accordingly, L-type Ca2+ current (ICa), late Na+ current (INa-late), rapid and slow components of the delayed rectifier K+ current (IKr and IKs, respectively), inward rectifier K+ current (IK1), transient outward K+ current (Ito1), and Na+/Ca2+ exchange current (INCX) were characterized and compared. Importantly, many of these measurements were performed using the action potential voltage clamp technique allowing for visualization of the actual current profiles flowing during the ventricular action potential. Densities and shapes of these ion currents, as well as the action potential configuration, were similar in human and canine ventricular cells, except for the density of IK1 and the recovery kinetics of Ito. IK1 displayed a largely four-fold larger density in canine than human myocytes, and Ito recovery from inactivation displayed a somewhat different time course in the two species. On the basis of these results, it is concluded that canine ventricular cells represent a reasonably good model for human myocytes for electrophysiological studies, however, it must be borne in mind that due to their stronger IK1, the repolarization reserve is more pronounced in canine cells, and moderate differences in the frequency-dependent repolarization patterns can also be anticipated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA