Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(8): e26719, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38826009

RESUMO

Gilles de la Tourette syndrome (GTS) is a disorder characterised by motor and vocal tics, which may represent habitual actions as a result of enhanced learning of associations between stimuli and responses (S-R). In this study, we investigated how adults with GTS and healthy controls (HC) learn two types of regularities in a sequence: statistics (non-adjacent probabilities) and rules (predefined order). Participants completed a visuomotor sequence learning task while EEG was recorded. To understand the neurophysiological underpinnings of these regularities in GTS, multivariate pattern analyses on the temporally decomposed EEG signal as well as sLORETA source localisation method were conducted. We found that people with GTS showed superior statistical learning but comparable rule-based learning compared to HC participants. Adults with GTS had different neural representations for both statistics and rules than HC adults; specifically, adults with GTS maintained the regularity representations longer and had more overlap between them than HCs. Moreover, over different time scales, distinct fronto-parietal structures contribute to statistical learning in the GTS and HC groups. We propose that hyper-learning in GTS is a consequence of the altered sensitivity to encode complex statistics, which might lead to habitual actions.


Assuntos
Eletroencefalografia , Síndrome de Tourette , Humanos , Síndrome de Tourette/fisiopatologia , Masculino , Adulto , Feminino , Adulto Jovem , Aprendizagem/fisiologia , Desempenho Psicomotor/fisiologia , Pessoa de Meia-Idade , Aprendizagem por Probabilidade
2.
Neurosci Biobehav Rev ; 163: 105747, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38870547

RESUMO

Similar to addictive substances, addictive behaviours such as gambling and gaming are associated with maladaptive modulation of key brain areas and functional networks implicated in learning and memory. Therefore, this review sought to understand how different learning and memory processes relate to behavioural addictions and to unravel their underlying neural mechanisms. Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched four databases - PsycINFO, PubMed, Scopus, and Web of Science using the agreed-upon search string. Findings suggest altered executive function-dependent learning processes and enhanced habit learning in behavioural addiction. Whereas the relationship between working memory and behavioural addiction is influenced by addiction type, working memory aspect, and task nature. Additionally, long-term memory is incoherent in individuals with addictive behaviours. Consistently, neurophysiological evidence indicates alterations in brain areas and networks implicated in learning and memory processes in behavioural addictions. Overall, the present review argues that, like substance use disorders, alteration in learning and memory processes may underlie the development and maintenance of behavioural addictions.


Assuntos
Comportamento Aditivo , Aprendizagem , Humanos , Comportamento Aditivo/fisiopatologia , Aprendizagem/fisiologia , Jogo de Azar/fisiopatologia , Memória/fisiologia , Encéfalo/fisiopatologia , Encéfalo/fisiologia , Função Executiva/fisiologia , Memória de Curto Prazo/fisiologia
3.
J Neurophysiol ; 132(2): 362-374, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38863426

RESUMO

Reactive inhibitory control plays an important role in phenotype of different diseases/different phases of a disease. One candidate electrophysiological marker of inhibitory control is frontal alpha asymmetry (FAA). FAA reflects the relative difference in contralateral frontal brain activity. However, the relationship between FAA and potential behavioral/brain activity indices of reactive inhibitory control is not yet clear. We assessed the relationship between resting-state FAA and indicators of reactive inhibitory control. Additionally, we investigated the effect of modulation of FAA via transcranial direct current stimulation (tDCS). We implemented a randomized sham-controlled design with 65 healthy humans (Mage = 23.93, SDage = 6.08; 46 female). Before and after 2-mA anodal tDCS of the right frontal site (with the cathode at the contralateral site) for 20 min, we collected EEG data and reactive inhibitory performance in neutral and food-reward conditions, using the stop signal task (SST). There was no support for the effect of tDCS on FAA or any indices of reactive inhibitory control. Our correlation analysis revealed an association between inhibitory brain activity in the food-reward condition and (pre-tDCS) asymmetry. Higher right relative to left frontal brain activity was correlated with reduced early-onset inhibitory activity and, in contrast, linked with higher late-onset inhibitory control in the food-reward condition. Similarly, event-related potential analyses showed reduced early-onset and enhanced late-onset inhibitory brain activity over time, particularly in the food-reward condition. These results suggest that there can be a dissociation regarding the lateralization of frontal brain activity and early- and late-onset inhibitory brain activity.NEW & NOTEWORTHY This research reveals dissociation between baseline frontal alpha asymmetry and the timing of reactive inhibitory brain activities in food-reward contexts. Whereas inhibitory control performance decreases over time in a stop signal task, electrophysiological indices show reduced early- and heightened late-onset inhibitory brain activity, especially in the reward condition. Additionally, greater right frontal activity correlates with reduced early-onset and increased late-onset inhibitory brain activity.


Assuntos
Ritmo alfa , Lobo Frontal , Inibição Psicológica , Estimulação Transcraniana por Corrente Contínua , Humanos , Feminino , Masculino , Ritmo alfa/fisiologia , Adulto , Adulto Jovem , Lobo Frontal/fisiologia , Lateralidade Funcional/fisiologia , Recompensa , Função Executiva/fisiologia , Eletroencefalografia
5.
NPJ Sci Learn ; 9(1): 30, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609413

RESUMO

The ability of the brain to extract patterns from the environment and predict future events, known as statistical learning, has been proposed to interact in a competitive manner with prefrontal lobe-related networks and their characteristic cognitive or executive functions. However, it remains unclear whether these cognitive functions also possess a competitive relationship with implicit statistical learning across individuals and at the level of latent executive function components. In order to address this currently unknown aspect, we investigated, in two independent experiments (NStudy1 = 186, NStudy2 = 157), the relationship between implicit statistical learning, measured by the Alternating Serial Reaction Time task, and executive functions, measured by multiple neuropsychological tests. In both studies, a modest, but consistent negative correlation between implicit statistical learning and most executive function measures was observed. Factor analysis further revealed that a factor representing verbal fluency and complex working memory seemed to drive these negative correlations. Thus, the antagonistic relationship between implicit statistical learning and executive functions might specifically be mediated by the updating component of executive functions or/and long-term memory access.

6.
Brain Commun ; 6(2): fcae092, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562308

RESUMO

Gilles de la Tourette syndrome is a neurodevelopmental disorder characterized by motor and vocal tics. It is associated with enhanced processing of stimulus-response associations, including a higher propensity to learn probabilistic stimulus-response contingencies (i.e. statistical learning), the nature of which is still elusive. In this study, we investigated the hypothesis that resting-state theta network organization is a key for the understanding of superior statistical learning in these patients. We investigated the graph-theoretical network architecture of theta oscillations in adult patients with Gilles de la Tourette syndrome and healthy controls during a statistical learning task and in resting states both before and after learning. We found that patients with Gilles de la Tourette syndrome showed a higher statistical learning score than healthy controls, as well as a more optimal (small-world-like) theta network before the task. Thus, patients with Gilles de la Tourette syndrome had a superior facility to integrate and evaluate novel information as a trait-like characteristic. Additionally, the theta network architecture in Gilles de la Tourette syndrome adapted more to the statistical information during the task than in HC. We suggest that hyper-learning in patients with Gilles de la Tourette syndrome is likely a consequence of increased sensitivity to perceive and integrate sensorimotor information leveraged through theta oscillation-based resting-state dynamics. The study delineates the neural basis of a higher propensity in patients with Gilles de la Tourette syndrome to pick up statistical contingencies in their environment. Moreover, the study emphasizes pathophysiologically endowed abilities in patients with Gilles de la Tourette syndrome, which are often not taken into account in the perception of this common disorder but could play an important role in destigmatization.

7.
J Cogn Neurosci ; 36(7): 1239-1264, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683699

RESUMO

Humans can extract statistical regularities of the environment to predict upcoming events. Previous research recognized that implicitly acquired statistical knowledge remained persistent and continued to influence behavior even when the regularities were no longer present in the environment. Here, in an fMRI experiment, we investigated how the persistence of statistical knowledge is represented in the brain. Participants (n = 32) completed a visual, four-choice, RT task consisting of statistical regularities. Two types of blocks constantly alternated with one another throughout the task: predictable statistical regularities in one block type and unpredictable ones in the other. Participants were unaware of the statistical regularities and their changing distribution across the blocks. Yet, they acquired the statistical regularities and showed significant statistical knowledge at the behavioral level not only in the predictable blocks but also in the unpredictable ones, albeit to a smaller extent. Brain activity in a range of cortical and subcortical areas, including early visual cortex, the insula, the right inferior frontal gyrus, and the right globus pallidus/putamen contributed to the acquisition of statistical regularities. The right insula, inferior frontal gyrus, and hippocampus as well as the bilateral angular gyrus seemed to play a role in maintaining this statistical knowledge. The results altogether suggest that statistical knowledge could be exploited in a relevant, predictable context as well as transmitted to and retrieved in an irrelevant context without a predictable structure.


Assuntos
Mapeamento Encefálico , Encéfalo , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Tempo de Reação/fisiologia , Estimulação Luminosa
8.
Anim Cogn ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429566

RESUMO

Chunking mechanisms are central to several cognitive processes. During the acquisition of visuo-motor sequences, it is commonly reported that these sequences are segmented into chunks leading to more fluid, rapid, and accurate performances. The question of a chunk's storage capacity has been often investigated but little is known about the dynamics of chunk size evolution relative to sequence length. In two experiments, we studied the dynamics and the evolution of a sequence's chunking pattern as a function of sequence length in a non-human primate species (Guinea baboons, Papio papio). Using an operant conditioning device, baboons had to point on a touch screen to a moving target. In Experiment 1, they had to produce repeatedly the same sequence of 4 movements during 2000 trials. In Experiment 2, the sequence was composed of 5 movements and was repeated 4000 times. For both lengths, baboons initially produced small chunks that became fewer and longer with practice. Moreover, the dynamics and the evolution of the chunking pattern varied as a function of sequence length. Finally, with extended practice (i.e., more than 2000 trials), we observed that the mean chunk size reached a plateau indicating that there are fundamental limits to chunking processes that also depend on sequence length. These data therefore provide new empirical evidence for understanding the general properties of chunking mechanisms in sequence learning.

9.
Sci Rep ; 14(1): 4955, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418511

RESUMO

The rise in the global population of older adults underscores the significance to investigate age-related cognitive disorders and develop early treatment modalities. Previous research suggests that non-invasive transcranial Alternating Current Stimulation (tACS) can moderately improve cognitive decline in older adults. However, non-declarative cognition has received relatively less attention. This study investigates whether repeated (16-day) bilateral theta-gamma cross-frequency tACS targeting the Dorsolateral Prefrontal Cortex (DLPFC) enhances non-declarative memory. Computerized cognitive training was applied alongside stimulation to control for the state-of-the-brain. The Alternating Serial Reaction Time (ASRT) task was employed to assess non-declarative functions such as visuomotor skill and probabilistic sequence learning. Results from 35 participants aged 55-82 indicated that active tACS led to more substantial improvements in visuomotor skills immediately after treatment, which persisted 3 months later, compared to sham tACS. Treatment benefit was more pronounced in older adults of younger age and those with pre-existing cognitive decline. However, neither intervention group exhibited modulation of probabilistic sequence learning. These results suggest that repeated theta-gamma tACS can selectively improve distinct non-declarative cognitive aspects when targeting the DLPFC. Our findings highlight the therapeutic potential of tACS in addressing deficits in learning and retaining general skills, which could have a positive impact on the quality of life for cognitively impaired older individuals by preserving independence in daily activities.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Idoso , Estimulação Transcraniana por Corrente Contínua/métodos , Qualidade de Vida , Aprendizagem/fisiologia , Cognição/fisiologia , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA