Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8192, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589522

RESUMO

In Fram Strait, we combined underway-sampling using the remote-controlled Automated Filtration System for Marine Microbes (AUTOFIM) with CTD-sampling for eDNA analyses, and with high-resolution optical measurements in an unprecedented approach to determine variability in plankton composition in response to physical forcing in a sub-mesoscale filament. We determined plankton composition and biomass near the surface with a horizontal resolution of ~ 2 km, and addressed vertical variability at five selected sites. Inside and near the filament, plankton composition was tightly linked to the hydrological dynamics related to the presence of sea ice. The comprehensive data set indicates that sea-ice melt related stratification near the surface inside the sub-mesoscale filament resulted in increased sequence abundances of sea ice-associated diatoms and zooplankton near the surface. In analogy to the physical data set, the underway eDNA data, complemented with highly sampled phytoplankton pigment data suggest a corridor of 7 km along the filament with enhanced photosynthetic biomass and sequence abundances of sea-ice associated plankton. Thus, based on our data we extrapolated an area of 350 km2 in Fram Strait with enhanced plankton abundances, possibly leading to enhanced POC export in an area that is around a magnitude larger than the visible streak of sea-ice.


Assuntos
Plâncton , Zooplâncton , Animais , Biomassa , Plâncton/genética , Zooplâncton/genética , Fotossíntese , Fitoplâncton/genética , Regiões Árticas , Ecossistema , Camada de Gelo
2.
PNAS Nexus ; 3(4): pgae081, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560528

RESUMO

Globally, the most intense uptake of anthropogenic carbon dioxide (CO2) occurs in the Atlantic north of 50°N, and it has been predicted that atmospheric CO2 sequestration in the Arctic Ocean will increase as a result of ice-melt and increased primary production. However, little is known about the impact of pan-Arctic sea-ice decline on carbon export processes. We investigated the potential ballasting effect of sea-ice derived material on settling aggregates and carbon export in the Fram Strait by combining 13 years of vertical flux measurements with benthic eDNA analysis, laboratory experiments, and tracked sea-ice distributions. We show that melting sea-ice in the Fram Strait releases cryogenic gypsum and terrigenous material, which ballasts sinking organic aggregates. As a result, settling velocities of aggregates increased ≤10-fold, resulting in ≤30% higher carbon export in the vicinity of the melting ice-edge. Cryogenic gypsum is formed in first-year sea-ice, which is predicted to increase as the Arctic is warming. Simultaneously, less sea-ice forms over the Arctic shelves, which is where terrigenous material is incorporated into sea-ice. Supporting this, we found that terrigenous fluxes from melting sea-ice in the Fram Strait decreased by >80% during our time-series. Our study suggests that terrigenous flux will eventually cease when enhanced sea-ice melt disrupts trans-Arctic sea-ice transport and thus, limit terrigenous-ballasted carbon flux. However, the predicted increase in Arctic primary production and gypsum formation may enhance gypsum-ballasted carbon flux and compensate for lowered terrigenous fluxes. It is thus unclear if sea-ice loss will reduce carbon export in the Arctic Ocean.

3.
Microorganisms ; 10(5)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35630405

RESUMO

Critical questions exist regarding the abundance and, especially, the export of picophytoplankton (≤2 µm diameter) in the Arctic. These organisms can dominate chlorophyll concentrations in Arctic regions, which are subject to rapid change. The picoeukaryotic prasinophyte Micromonas grows in polar environments and appears to constitute a large, but variable, proportion of the phytoplankton in these waters. Here, we analyze 81 samples from the upper 100 m of the water column from the Fram Strait collected over multiple years (2009−2015). We also analyze sediment trap samples to examine picophytoplankton contributions to export, using both 18S rRNA gene qPCR and V1-V2 16S rRNA Illumina amplicon sequencing to assess the Micromonas abundance within the broader diversity of photosynthetic eukaryotes based on the phylogenetic placement of plastid-derived 16S amplicons. The material sequenced from the sediment traps in July and September 2010 showed that 11.2 ± 12.4% of plastid-derived amplicons are from picoplanktonic prasinophyte algae and other green lineage (Viridiplantae) members. In the traps, Micromonas dominated (83.6 ± 21.3%) in terms of the overall relative abundance of Viridiplantae amplicons, specifically the species Micromonas polaris. Temporal variations in Micromonas abundances quantified by qPCR were also observed, with higher abundances in the late-July traps and deeper traps. In the photic zone samples, four prasinophyte classes were detected in the amplicon data, with Micromonas again being the dominant prasinophyte, based on the relative abundance (89.4 ± 8.0%), but with two species (M. polaris and M. commoda-like) present. The quantitative PCR assessments showed that the photic zone samples with higher Micromonas abundances (>1000 gene copies per mL) had significantly lower standing stocks of phosphate and nitrate, and a shallower average depth (20 m) than those with fewer Micromonas. This study shows that despite their size, prasinophyte picophytoplankton are exported to the deep sea, and that Micromonas is particularly important within this size fraction in Arctic marine ecosystems.

4.
Environ Microbiol ; 24(9): 4124-4136, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35590443

RESUMO

Seasonal variations in day length and temperature, in combination with dynamic factors such as advection from the North Atlantic, influence primary production and the microbial loop in the Fram Strait. Here, we investigated the seasonal variability of biopolymers, microbial abundance and microbial composition within the upper 100 m during summer and fall. Flow cytometry revealed a shift in the autotrophic community from picoeukaryotes dominating in summer to a 34-fold increase of Synechococcus by fall. Furthermore, a significant decline in biopolymers concentrations covaried with increasing microbial diversity based on 16S rRNA gene sequencing along with a community shift towards fewer polymer-degrading genera in fall. The seasonal succession in the biopolymer pool and microbes indicates distinct metabolic regimes, with a higher relative abundance of polysaccharide-degrading genera in summer and a higher relative abundance of common taxa in fall. The parallel analysis of DOM and microbial diversity provides an important baseline for microbe-substrate relationships over the seasonal cycle in the Arctic Ocean.


Assuntos
Microbiota , Synechococcus , Microbiota/genética , Polímeros , RNA Ribossômico 16S/genética , Estações do Ano , Synechococcus/genética
5.
Nat Commun ; 12(1): 7309, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911949

RESUMO

The ocean moderates the world's climate through absorption of heat and carbon, but how much carbon the ocean will continue to absorb remains unknown. The North Atlantic Ocean west (Baffin Bay/Labrador Sea) and east (Fram Strait/Greenland Sea) of Greenland features the most intense absorption of anthropogenic carbon globally; the biological carbon pump (BCP) contributes substantially. As Arctic sea-ice melts, the BCP changes, impacting global climate and other critical ocean attributes (e.g. biodiversity). Full understanding requires year-round observations across a range of ice conditions. Here we present such observations: autonomously collected Eulerian continuous 24-month time-series in Fram Strait. We show that, compared to ice-unaffected conditions, sea-ice derived meltwater stratification slows the BCP by 4 months, a shift from an export to a retention system, with measurable impacts on benthic communities. This has implications for ecosystem dynamics in the future warmer Arctic where the seasonal ice zone is expected to expand.


Assuntos
Carbono/análise , Camada de Gelo/química , Água do Mar/química , Oceano Atlântico , Ciclo do Carbono , Mudança Climática , Ecossistema , Groenlândia , Terra Nova e Labrador
6.
Commun Biol ; 4(1): 1255, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732822

RESUMO

Arctic Ocean sea ice cover is shrinking due to warming. Long-term sediment trap data shows higher export efficiency of particulate organic carbon in regions with seasonal sea ice compared to regions without sea ice. To investigate this sea-ice enhanced export, we compared how different early summer phytoplankton communities in seasonally ice-free and ice-covered regions of the Fram Strait affect carbon export and vertical dispersal of microbes. In situ collected aggregates revealed two-fold higher carbon export of diatom-rich aggregates in ice-covered regions, compared to Phaeocystis aggregates in the ice-free region. Using microbial source tracking, we found that ice-covered regions were also associated with more surface-born microbial clades exported to the deep sea. Taken together, our results showed that ice-covered regions are responsible for high export efficiency and provide strong vertical microbial connectivity. Therefore, continuous sea-ice loss may decrease the vertical export efficiency, and thus the pelagic-benthic coupling, with potential repercussions for Arctic deep-sea ecosystems.


Assuntos
Ciclo do Carbono , Camada de Gelo/química , Camada de Gelo/microbiologia , Microbiota/fisiologia , Archaea/metabolismo , Regiões Árticas , Bactérias/metabolismo , Oceanos e Mares
7.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190366, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862814

RESUMO

The Arctic Ocean is considerably affected by the consequences of global warming, including more extreme seasonal fluctuations in the physical environment. So far, little is known about seasonality in Arctic marine ecosystems in particular microbial dynamics and cycling of organic matter. The limited characterization can be partially attributed to logistic difficulties of sampling in the Arctic Ocean beyond the summer season. Here, we investigated the distribution and composition of dissolved organic matter (DOM), gel particles and heterotrophic bacterial activity in the Fram Strait during summer and autumn. Our results revealed that phytoplankton biomass influenced the concentration and composition of semi-labile dissolved organic carbon (DOC), which strongly decreased from summer to autumn. The seasonal decrease in bioavailability of DOM appeared to be the dominant control on bacterial abundance and activity, while no temperature effect was determined. Additionally, there were clear differences in transparent exopolymer particles (TEP) and Coomassie Blue stainable particles (CSP) dynamics. The amount of TEP and CSP decreased from summer to autumn, but CSP was relatively enriched in both seasons. Our study therewith indicates clear seasonal differences in the microbial cycling of organic matter in the Fram Strait. Our data may help to establish baseline knowledge about seasonal changes in microbial ecosystem dynamics to better assess the impact of environmental change in the warming Arctic Ocean. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Aquecimento Global , Compostos Orgânicos/análise , Água do Mar/química , Microbiologia da Água , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/metabolismo , Regiões Árticas , Biomassa , Ciclo do Carbono , Ecossistema , Groenlândia , Modelos Biológicos , Noruega , Oceanos e Mares , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/metabolismo , Estações do Ano
8.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190368, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862819

RESUMO

Two mooring arrays carrying sediment traps were deployed from September 2011 to August 2012 at ∼83°N on each side of the Gakkel Ridge in the Nansen and Amundsen Basins to measure downward particle flux below the euphotic zone (approx. 250 m) and approximately 150 m above seafloor at approximately 3500 and 4000 m depth, respectively. In a region that still experiences nearly complete ice cover throughout the year, export fluxes of total particulate matter (TPM), particulate organic carbon (POC), particulate nitrogen (PN), biogenic matter, lithogenic matter, biogenic particulate silica (bPSi), calcium carbonate (CaCO3), protists and biomarkers only slightly decreased with depth. Seasonal variations of particulate matter fluxes were similar on both sides of the Gakkel Ridge. Somewhat higher export rates in the Amundsen Basin and differences in the composition of the sinking TPM and bPSi on each side of the Gakkel Ridge probably reflected the influence of the Lena River/Transpolar Drift in the Amundsen Basin and the influence of Atlantic water in the Nansen Basin. Low variations in particle export with depth revealed a limited influence of lateral advection in the deep barren Eurasian Basin. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Ecossistema , Sedimentos Geológicos/química , Camada de Gelo/química , Organismos Aquáticos/metabolismo , Regiões Árticas , Biodiversidade , Ciclo do Carbono , Oceanos e Mares , Compostos Orgânicos/análise , Material Particulado/análise , Estações do Ano , Água do Mar/química
9.
Sci Rep ; 9(1): 5459, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940829

RESUMO

Sea ice is an important transport vehicle for gaseous, dissolved and particulate matter in the Arctic Ocean. Due to the recently observed acceleration in sea ice drift, it has been assumed that more matter is advected by the Transpolar Drift from shallow shelf waters to the central Arctic Ocean and beyond. However, this study provides first evidence that intensified melt in the marginal zones of the Arctic Ocean interrupts the transarctic conveyor belt and has led to a reduction of the survival rates of sea ice exported from the shallow Siberian shelves (-15% per decade). As a consequence, less and less ice formed in shallow water areas (<30 m) has reached Fram Strait (-17% per decade), and more ice and ice-rafted material is released in the northern Laptev Sea and central Arctic Ocean. Decreasing survival rates of first-year ice are visible all along the Russian shelves, but significant only in the Kara Sea, East Siberian Sea and western Laptev Sea. Identified changes affect biogeochemical fluxes and ecological processes in the central Arctic: A reduced long-range transport of sea ice alters transport and redistribution of climate relevant gases, and increases accumulation of sediments and contaminates in the central Arctic Ocean, with consequences for primary production, and the biodiversity of the Arctic Ocean.

10.
Opt Express ; 26(14): A678-A696, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114057

RESUMO

Satellite remote sensing of chlorophyll a concentration (Chl-a) in the Arctic Ocean is spatially and temporally limited and needs to be supplemented and validated with substantial volumes of in situ observations. Here, we evaluated the capability of obtaining highly resolved in situ surface Chl-a using underway spectrophotometry operated during two summer cruises in 2015 and 2016 in the Fram Strait. Results showed that Chl-a measured using high pressure liquid chromatography (HPLC) was well related (R2 = 0.90) to the collocated particulate absorption line height at 676 nm obtained from the underway spectrophotometry system. This enabled continuous surface Chl-a estimation along the cruise tracks. When used to validate Chl-a operational products as well as to assess the Chl-a algorithms of the aqua moderate resolution imaging spectroradiometer (MODIS-A) and Sentinel-3 Ocean Land Color Imager (OLCI) Level 2 Chl-a operational products, and from OLCI Level 2 products processed with Polymer atmospheric correction algorithm (version 4.1), the underway spectrophotometry based Chl-a data sets proved to be a much more sufficient data source by generating over one order of magnitude more match-ups than those obtained from discrete water samples. Overall, the band ratio (OCI, OC4) Chl-a operational products from MODIS-A and OLCI as well as OLCI C2RCC products showed acceptable results. The OLCI Polymer standard output provided the most reliable Chl-a estimates, and nearly as good results were obtained from the OCI algorithm with Polymer atmospheric correction method. This work confirms the great advantage of the underway spectrophotometry in enlarging in situ Chl-a data sets for the Fram Strait and improving satellite Chl-a validation and Chl-a algorithm assessment over discrete water sample analysis in the laboratory.

11.
Sci Rep ; 7(1): 4129, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28646231

RESUMO

Transparent exopolymer particles (TEP) are a class of marine gel particles and important links between surface ocean biology and atmospheric processes. Derived from marine microorganisms, these particles can facilitate the biological pumping of carbon dioxide to the deep sea, or act as cloud condensation and ice nucleation particles in the atmosphere. Yet, environmental controls on TEP abundance in the ocean are poorly known. Here, we investigated some of these controls during the first multiyear time-series on TEP abundance for the Fram Strait, the Atlantic gateway to the Central Arctic Ocean. Data collected at the Long-Term Ecological Research observatory HAUSGARTEN during 2009 to 2014 indicate a strong biological control with highest abundance co-occurring with the prymnesiophyte Phaeocystis pouchetii. Higher occurrence of P. pouchetii in the Arctic Ocean has previously been related to northward advection of warmer Atlantic waters, which is expected to increase in the future. Our study highlights the role of plankton key species in driving climate relevant processes; thus, changes in plankton distribution need to be accounted for when estimating the ocean's biogeochemical response to global change.

12.
Proc Natl Acad Sci U S A ; 113(24): E3332-40, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27247393

RESUMO

The 2010 Deepwater Horizon oil spill resulted in 1.6-2.6 × 10(10) grams of petrocarbon accumulation on the seafloor. Data from a deep sediment trap, deployed 7.4 km SW of the well between August 2010 and October 2011, disclose that the sinking of spill-associated substances, mediated by marine particles, especially phytoplankton, continued at least 5 mo following the capping of the well. In August/September 2010, an exceptionally large diatom bloom sedimentation event coincided with elevated sinking rates of oil-derived hydrocarbons, black carbon, and two key components of drilling mud, barium and olefins. Barium remained in the water column for months and even entered pelagic food webs. Both saturated and polycyclic aromatic hydrocarbon source indicators corroborate a predominant contribution of crude oil to the sinking hydrocarbons. Cosedimentation with diatoms accumulated contaminants that were dispersed in the water column and transported them downward, where they were concentrated into the upper centimeters of the seafloor, potentially leading to sustained impact on benthic ecosystems.


Assuntos
Cadeia Alimentar , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos/química , Golfo do México , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
13.
PLoS One ; 11(2): e0148512, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26895333

RESUMO

Information on recent photosynthetic biomass distribution and biogeography of Arctic marine pico-eukaryotes (0.2-3 µm) is needed to better understand consequences of environmental change for Arctic marine ecosystems. We analysed pico-eukaryote biomass and community composition in Fram Strait and large parts of the Central Arctic Ocean (Nansen Basin, Amundsen Basin) using chlorophyll a (Chl a) measurements, automated ribosomal intergenic spacer analysis (ARISA) and 454-pyrosequencing. Samples were collected during summer 2012, the year with the most recent record sea ice minimum. Chl a concentrations were highest in eastern Fram Strait and pico-plankton accounted for 60-90% of Chl a biomass during the observation period. ARISA-patterns and 454-pyrosequencing revealed that pico-eukaryote distribution is closely related to water mass distribution in the euphotic zone of the Arctic Ocean. Phaeocystaceae, Micromonas sp., Dinophyceae and Syndiniales constitute a high proportion of sequence reads, while sequence abundance of autotrophic Phaeocystaceae and mixotrophic Micromonas sp. was inversely correlated. Highest sequence abundances of Phaeocystaceae were observed in the warm Atlantic Waters in Fram Strait, while Micromonas sp. dominated the abundant biosphere in the arctic halocline. Our results are of particular interest considering existing hypotheses that environmental conditions in Nansen Basin might become more similar to the current conditions in Fram Strait. We propose that in response, biodiversity and biomass of pico-eukaryotes in Nansen Basin could resemble those currently observed in Fram Strait in the future. This would significantly alter biogeochemical cycles in a large part of the Central Arctic Ocean.


Assuntos
Organismos Aquáticos , Biomassa , Eucariotos/metabolismo , Fotossíntese , Estações do Ano , Água do Mar , Regiões Árticas , Biodiversidade , Clorofila , Clorofila A , Ecossistema , Meio Ambiente , Eucariotos/genética , Plâncton , Salinidade , Temperatura
14.
J Eukaryot Microbiol ; 61(6): 569-79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24996010

RESUMO

Investigation of marine eukaryotic picoplankton composition is limited by missing morphological features for appropriate identification. Consequently, molecular methods are required. In this study, we used 454-pyrosequencing to study picoplankton communities at four stations in the West Spitsbergen Current (WSC; Fram Strait). High abundances of Micromonas pusilla were detected in the station situated closest to Spitsbergen, as seen in surveys of picoplankton assemblages in the Beaufort Sea. At the other three stations, other phylotypes, affiliating with Phaeocystis pouchetii and Syndiniales in the phylogenetic tree, were present in high numbers, dominating most of them. The picoplankton community structures at three of the stations, all with similar salinity and temperature, were alike. At the fourth station, the influence of the East Spitsbergen Current, transporting cold water from the Barents Sea around Spitsbergen, causes different abiotic parameters that result in a significantly different picoeukaryote community composition, which is dominated by M. pusilla. This observation is particularly interesting with regard to ongoing environmental changes in the Arctic. Ongoing warming of the WSC could convey a new picoplankton assemblage into the Arctic Ocean, which may come to affect the dominance of M. pusilla.


Assuntos
Eucariotos/classificação , Plâncton/classificação , Sequência de Bases , Biodiversidade , Clorófitas , Meio Ambiente , Eucariotos/genética , Eucariotos/isolamento & purificação , Oceanos e Mares , Filogenia , Plâncton/genética , Plâncton/isolamento & purificação , RNA Ribossômico 18S/genética , Svalbard , Temperatura
15.
J Phycol ; 49(5): 996-1010, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27007321

RESUMO

In this study, we present the first comprehensive analyses of the diversity and distribution of marine protist (micro-, nano-, and picoeukaryotes) in the Western Fram Strait, using 454-pyrosequencing and high-pressure liquid chromatography (HPLC) at five stations in summer 2010. Three stations (T1; T5; T7) were influenced by Polar Water, characterized by cold water with lower salinity (<33) and different extents of ice concentrations. Atlantic Water influenced the other two stations (T6; T9). While T6 was located in the mixed water zone characterized by cold water with intermediate salinity (~33) and high ice concentrations, T9 was located in warm water with high salinity (~35) and no ice-coverage at all. General trends in community structure according to prevailing environmental settings, observed with both methods, coincided well. At two stations, T1 and T7, characterized by lower ice concentrations, diatoms (Fragilariopsis sp., Porosira sp., Thalassiosira spp.) dominated the protist community. The third station (T5) was ice-covered, but has been ice-free for ~4 weeks prior to sampling. At this station, dinoflagellates (Dinophyceae 1, Woloszynskia sp. and Gyrodinium sp.) were dominant, reflecting a post-bloom situation. At station T6 and T9, the protist communities consisted mainly of picoeukaryotes, e.g., Micromonas spp. Based on our results, 454-pyrosequencing has proven to be an adequate tool to provide comprehensive information on the composition of protist communities. Furthermore, this study suggests that a snap-shot of a few, but well-chosen samples can provide an overview of community structure patterns and succession in a dynamic marine environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA