Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4339, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773116

RESUMO

Cell-surface receptors form the front line of plant immunity. The leucine-rich repeat (LRR)-receptor-like kinases SOBIR1 and BAK1 are required for the functionality of the tomato LRR-receptor-like protein Cf-4, which detects the secreted effector Avr4 of the pathogenic fungus Fulvia fulva. Here, we show that the kinase domains of SOBIR1 and BAK1 directly phosphorylate each other and that residues Thr522 and Tyr469 of the kinase domain of Nicotiana benthamiana SOBIR1 are required for its kinase activity and for interacting with signalling partners, respectively. By knocking out multiple genes belonging to different receptor-like cytoplasmic kinase (RLCK)-VII subfamilies in N. benthamiana:Cf-4, we show that members of RLCK-VII-6, -7, and -8 differentially regulate the Avr4/Cf-4-triggered biphasic burst of reactive oxygen species. In addition, members of RLCK-VII-7 play an essential role in resistance against the oomycete pathogen Phytophthora palmivora. Our study provides molecular evidence for the specific roles of RLCKs downstream of SOBIR1/BAK1-containing immune complexes.


Assuntos
Nicotiana , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Proteínas Serina-Treonina Quinases , Nicotiana/imunologia , Nicotiana/microbiologia , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Imunidade Vegetal/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Phytophthora/patogenicidade , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Fosforilação , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
2.
Science ; 381(6660): 891-897, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37616352

RESUMO

Plant cell surface pattern recognition receptors (PRRs) and intracellular immune receptors cooperate to provide immunity to microbial infection. Both receptor families have coevolved at an accelerated rate, but the evolution and diversification of PRRs is poorly understood. We have isolated potato surface receptor Pep-13 receptor unit (PERU) that senses Pep-13, a conserved immunogenic peptide pattern from plant pathogenic Phytophthora species. PERU, a leucine-rich repeat receptor kinase, is a bona fide PRR that binds Pep-13 and enhances immunity to Phytophthora infestans infection. Diversification in ligand binding specificities of PERU can be traced to sympatric wild tuber-bearing Solanum populations in the Central Andes. Our study reveals the evolution of cell surface immune receptor alleles in wild potato populations that recognize ligand variants not recognized by others.


Assuntos
Phytophthora infestans , Imunidade Vegetal , Receptores Imunológicos , Solanum tuberosum , Ligantes , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia
3.
Nat Commun ; 14(1): 3621, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336953

RESUMO

The Arabidopsis thaliana Receptor-Like Protein RLP30 contributes to immunity against the fungal pathogen Sclerotinia sclerotiorum. Here we identify the RLP30-ligand as a small cysteine-rich protein (SCP) that occurs in many fungi and oomycetes and is also recognized by the Nicotiana benthamiana RLP RE02. However, RLP30 and RE02 share little sequence similarity and respond to different parts of the native/folded protein. Moreover, some Brassicaceae other than Arabidopsis also respond to a linear SCP peptide instead of the folded protein, suggesting that SCP is an eminent immune target that led to the convergent evolution of distinct immune receptors in plants. Surprisingly, RLP30 shows a second ligand specificity for a SCP-nonhomologous protein secreted by bacterial Pseudomonads. RLP30 expression in N. tabacum results in quantitatively lower susceptibility to bacterial, fungal and oomycete pathogens, thus demonstrating that detection of immunogenic patterns by Arabidopsis RLP30 is involved in defense against pathogens from three microbial kingdoms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oomicetos , Arabidopsis/metabolismo , Cisteína/metabolismo , Ligantes , Proteínas/metabolismo , Oomicetos/metabolismo , Bactérias/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Curr Opin Plant Biol ; 74: 102384, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37276832

RESUMO

Plants use surface resident and intracellular immune receptors to provide robust immunity against microbial infections. The contribution of the two receptor types to plant immunity differs spatially and temporally. The ongoing identification of new plant cell surface immune receptors and their microbial-derived immunogenic ligands reveal a previously unexpected complexity of plant surface sensors involved in the detection of specific microbial species. Comparative analyses of the plant species distribution of cell surface immune receptors indicate that plants harbor larger sets of genus- or species-specific surface receptors in addition to very few widespread pattern sensors. Leucine-rich repeat surface and intracellular immune sensors emerge as two polymorphic receptor classes whose evolutionary trajectories appear to be linked. This is consistent with their functional cooperativity in providing full plant immunity.


Assuntos
Células Vegetais , Plantas , Plantas/genética , Imunidade Vegetal/genética , Doenças das Plantas
5.
Nat Genet ; 55(6): 921-926, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37217714

RESUMO

To safeguard bread wheat against pests and diseases, breeders have introduced over 200 resistance genes into its genome, thus nearly doubling the number of designated resistance genes in the wheat gene pool1. Isolating these genes facilitates their fast-tracking in breeding programs and incorporation into polygene stacks for more durable resistance. We cloned the stem rust resistance gene Sr43, which was crossed into bread wheat from the wild grass Thinopyrum elongatum2,3. Sr43 encodes an active protein kinase fused to two domains of unknown function. The gene, which is unique to the Triticeae, appears to have arisen through a gene fusion event 6.7 to 11.6 million years ago. Transgenic expression of Sr43 in wheat conferred high levels of resistance to a wide range of isolates of the pathogen causing stem rust, highlighting the potential value of Sr43 in resistance breeding and engineering.


Assuntos
Basidiomycota , Resistência à Doença , Resistência à Doença/genética , Doenças das Plantas/genética , Melhoramento Vegetal , Genes de Plantas , Basidiomycota/genética
6.
New Phytol ; 237(3): 746-750, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36210522

RESUMO

Lipid membrane destruction by microbial pore-forming toxins (PFTs) is a ubiquitous mechanism of damage to animal cells, but is less prominent in plants. Nep1-like proteins (NLPs) secreted by phytopathogens that cause devastating crop diseases, such as potato late blight, represent the only family of microbial PFTs that effectively damage plant cells by disrupting the integrity of the plant plasma membrane. Recent research has elucidated the molecular mechanism of NLP-mediated membrane damage, which is unique among microbial PFTs and highly adapted to the plant membrane environment. In this review, we cover recent insight into how NLP cytolysins damage plant membranes and cause cell death.


Assuntos
Plantas , Proteínas , Animais , Membrana Celular , Morte Celular
7.
Cell Host Microbe ; 30(12): 1717-1731.e6, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36446350

RESUMO

Arabidopsis BAK1/SERK3, a co-receptor of leucine-rich repeat pattern recognition receptors (PRRs), mediates pattern-triggered immunity (PTI). Genetic inactivation of BAK1 or BAK1-interacting receptor-like kinases (BIRs) causes cell death, but the direct mechanisms leading to such deregulation remains unclear. Here, we found that the TIR-NBS-LRR protein CONSTITUTIVE SHADE AVOIDANCE 1 (CSA1) physically interacts with BIR3, but not with BAK1. CSA1 mediates cell death in bak1-4 and bak1-4 bir3-2 mutants via components of effector-triggered immunity-(ETI) pathways. Effector HopB1-mediated perturbation of BAK1 also results in CSA1-dependent cell death. Likewise, microbial pattern pg23-induced cell death, but not PTI responses, requires CSA1. Thus, we show that CSA1 guards BIR3 BAK1 homeostasis and integrates pattern- and effector-mediated cell death pathways downstream of BAK1. De-repression of CSA1 in the absence of intact BAK1 and BIR3 triggers ETI cell death. This suggests that PTI and ETI pathways are activated downstream of BAK1 for efficient plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Imunidade Vegetal , Imunidade , Homeostase
8.
New Phytol ; 235(2): 690-700, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35383933

RESUMO

Necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are found throughout several plant-associated microbial taxa and are typically considered to possess cytolytic activity exclusively on dicot plant species. However, cytolytic NLPs are also produced by pathogens of monocot plants such as the onion (Allium cepa) pathogen Botrytis squamosa. We determined the cytotoxic activity of B. squamosa BsNep1, as well as other previously characterized NLPs, on various monocot plant species and assessed the plant plasma membrane components required for NLP sensitivity. Leaf infiltration of NLPs showed that onion cultivars are differentially sensitive to NLPs, and analysis of their sphingolipid content revealed that the GIPC series A : series B ratio did not correlate to NLP sensitivity. A tri-hybrid population derived from a cross between onion and two wild relatives showed variation in NLP sensitivity within the population. We identified a quantitative trait locus (QTL) for NLP insensitivity that colocalized with a previously identified QTL for B. squamosa resistance and the segregating trait of NLP insensitivity correlated with the sphingolipid content. Our results demonstrate the cytotoxic activity of NLPs on several monocot plant species and legitimize their presence in monocot-specific plant pathogens.


Assuntos
Plantas , Proteínas , Peptídeos , Folhas de Planta , Esfingolipídeos
9.
Sci Adv ; 8(10): eabj9406, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275729

RESUMO

Microbial plant pathogens secrete a range of effector proteins that damage host plants and consequently constrain global food production. Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) are produced by numerous phytopathogenic microbes that cause important crop diseases. Many NLPs are cytolytic, causing cell death and tissue necrosis by disrupting the plant plasma membrane. Here, we reveal the unique molecular mechanism underlying the membrane damage induced by the cytotoxic model NLP. This membrane disruption is a multistep process that includes electrostatic-driven, plant-specific lipid recognition, shallow membrane binding, protein aggregation, and transient pore formation. The NLP-induced damage is not caused by membrane reorganization or large-scale defects but by small membrane ruptures. This distinct mechanism of lipid membrane disruption is highly adapted to effectively damage plant cells.


Assuntos
Oomicetos , Lipídeos , Necrose , Oomicetos/metabolismo , Perforina/metabolismo , Plantas/metabolismo , Proteínas/metabolismo
10.
Nat Commun ; 13(1): 1294, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277499

RESUMO

Activation of plant pattern-triggered immunity (PTI) relies on the recognition of microbe-derived structures, termed patterns, through plant-encoded surface-resident pattern recognition receptors (PRRs). We show that proteobacterial translation initiation factor 1 (IF1) triggers PTI in Arabidopsis thaliana and related Brassicaceae species. Unlike for most other immunogenic patterns, IF1 elicitor activity cannot be assigned to a small peptide epitope, suggesting that tertiary fold features are required for IF1 receptor activation. We have deployed natural variation in IF1 sensitivity to identify Arabidopsis leucine-rich repeat (LRR) receptor-like protein 32 (RLP32) as IF1 receptor using a restriction site-associated DNA sequencing approach. RLP32 confers IF1 sensitivity to rlp32 mutants, IF1-insensitive Arabidopsis accessions and IF1-insensitive Nicotiana benthamiana, binds IF1 specifically and forms complexes with LRR receptor kinases SOBIR1 and BAK1 to mediate signaling. Similar to other PRRs, RLP32 confers resistance to Pseudomonas syringae, highlighting an unexpectedly complex array of bacterial pattern sensors within a single plant species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Iniciação em Procariotos , Receptores de Reconhecimento de Padrão , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Genótipo , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteobactérias/metabolismo , Pseudomonas syringae/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo
11.
Nat Rev Microbiol ; 20(8): 449-464, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35296800

RESUMO

Plant pathogenic viruses, bacteria, fungi and oomycetes cause destructive diseases in natural habitats and agricultural settings, thereby threatening plant biodiversity and global food security. The capability of plants to sense and respond to microbial infection determines the outcome of plant-microorganism interactions. Host-adapted microbial pathogens exploit various infection strategies to evade or counter plant immunity and eventually establish a replicative niche. Evasion of plant immunity through dampening host recognition or the subsequent immune signalling and defence execution is a crucial infection strategy used by different microbial pathogens to cause diseases, underpinning a substantial obstacle for efficient deployment of host genetic resistance genes for sustainable disease control. In this Review, we discuss current knowledge of the varied strategies microbial pathogens use to evade the complicated network of plant immunity for successful infection. In addition, we discuss how to exploit this knowledge to engineer crop resistance.


Assuntos
Imunidade Vegetal , Vírus , Bactérias/genética , Fungos/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Plantas/microbiologia
12.
Front Plant Sci ; 13: 1037030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714772

RESUMO

Pattern-triggered immunity (PTI) in plants is mediated by cell surface-localized pattern recognition receptors (PRRs) upon perception of microbe-associated molecular pattern (MAMPs). MAMPs are conserved molecules across microbe species, or even kingdoms, and PRRs can confer broad-spectrum disease resistance. Pep-13/25 are well-characterized MAMPs in Phytophthora species, which are renowned devastating oomycete pathogens of potato and other plants, and for which genetic resistance is highly wanted. Pep-13/25 are derived from a 42 kDa transglutaminase GP42, but their cognate PRR has remained unknown. Here, we genetically mapped a novel surface immune receptor that recognizes Pep-25. By using effectoromics screening, we characterized the recognition spectrum of Pep-13/25 in diverse Solanaceae species. Response to Pep-13/25 was predominantly found in potato and related wild tuber-bearing Solanum species. Bulk-segregant RNA sequencing (BSR-Seq) and genetic mapping the response to Pep-25 led to a 0.081 cM region on the top of chromosome 3 in the wild potato species Solanum microdontum subsp. gigantophyllum. Some BAC clones in this region were isolated and sequenced, and we found the Pep-25 receptor locates in a complex receptor-like kinase (RLK) locus. This study is an important step toward the identification of the Pep-13/25 receptor, which can potentially lead to broad application in potato and various other hosts of Phytophthora species.

13.
Plant Cell Environ ; 44(12): 3545-3562, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34558681

RESUMO

In Arabidopsis thaliana, perception of chitin from fungal cell walls is mediated by three LysM-containing Receptor-Like Kinases (LYKs): CERK1, which is absolutely required for chitin perception, and LYK4 and LYK5, which act redundantly. The role in plant innate immunity of a fourth LYK protein, LYK2, is currently not known. Here we show that CERK1, LYK2 and LYK5 are dispensable for basal susceptibility to B. cinerea but are necessary for chitin-induced resistance to this pathogen. LYK2 is dispensable for chitin perception and early signalling events, though it contributes to callose deposition induced by this elicitor. Notably, LYK2 is also necessary for enhanced resistance to B. cinerea and Pseudomonas syringae induced by flagellin and for elicitor-induced priming of defence gene expression during fungal infection. Consistently, overexpression of LYK2 enhances resistance to B. cinerea and P. syringae and results in increased expression of defence-related genes during fungal infection. LYK2 appears to be required to establish a primed state in plants exposed to biotic elicitors, ensuring a robust resistance to subsequent pathogen infections.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Pseudomonas syringae/fisiologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/imunologia , Doenças das Plantas/microbiologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
14.
Nature ; 598(7881): 495-499, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34497423

RESUMO

Plants deploy cell-surface and intracellular leucine rich-repeat domain (LRR) immune receptors to detect pathogens1. LRR receptor kinases and LRR receptor proteins at the plasma membrane recognize microorganism-derived molecules to elicit pattern-triggered immunity (PTI), whereas nucleotide-binding LRR proteins detect microbial effectors inside cells to confer effector-triggered immunity (ETI). Although PTI and ETI are initiated in different host cell compartments, they rely on the transcriptional activation of similar sets of genes2, suggesting pathway convergence upstream of nuclear events. Here we report that PTI triggered by the Arabidopsis LRR receptor protein RLP23 requires signalling-competent dimers of the lipase-like proteins EDS1 and PAD4, and of ADR1 family helper nucleotide-binding LRRs, which are all components of ETI. The cell-surface LRR receptor kinase SOBIR1 links RLP23 with EDS1, PAD4 and ADR1 proteins, suggesting the formation of supramolecular complexes containing PTI receptors and transducers at the inner side of the plasma membrane. We detected similar evolutionary patterns in LRR receptor protein and nucleotide-binding LRR genes across Arabidopsis accessions; overall higher levels of variation in LRR receptor proteins than in LRR receptor kinases are consistent with distinct roles of these two receptor families in plant immunity. We propose that the EDS1-PAD4-ADR1 node is a convergence point for defence signalling cascades, activated by both surface-resident and intracellular LRR receptors, in conferring pathogen immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Imunidade Vegetal , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/química , Hidrolases de Éster Carboxílico/química , Proteínas de Ligação a DNA/química , Domínios Proteicos , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo
15.
Nat Plants ; 7(9): 1254-1263, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34326531

RESUMO

Plant pattern recognition receptors (PRRs) facilitate recognition of microbial patterns and mediate activation of plant immunity. Arabidopsis thaliana RLP42 senses fungal endopolygalacturonases (PGs) and triggers plant defence through complex formation with SOBIR1 and SERK co-receptors. Here, we show that a conserved 9-amino-acid fragment pg9(At) within PGs is sufficient to activate RLP42-dependent plant immunity. Structure-function analysis reveals essential roles of amino acid residues within the RLP42 leucine-rich repeat and island domains for ligand binding and PRR complex assembly. Sensitivity to pg9(At), which is restricted to A. thaliana and exhibits scattered accession specificity, is unusual for known PRRs. Arabidopsis arenosa and Brassica rapa, two Brassicaceae species closely related to A. thaliana, respectively perceive immunogenic PG fragments pg20(Aa) and pg36(Bra), which are structurally distinct from pg9(At). Our study provides evidence for rapid evolution of polymorphic PG sensors with distinct pattern specificities within a single plant family.


Assuntos
Arabidopsis/genética , Arabidopsis/imunologia , Brassica/genética , Brassica/imunologia , Nicotiana/genética , Nicotiana/imunologia , Imunidade Vegetal/genética , Poligalacturonase/imunologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas , Poligalacturonase/genética
16.
PLoS Pathog ; 17(4): e1009477, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33857257

RESUMO

The lack of efficient methods to control the major diseases of crops most important to agriculture leads to huge economic losses and seriously threatens global food security. Many of the most important microbial plant pathogens, including bacteria, fungi, and oomycetes, secrete necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), which critically contribute to the virulence and spread of the disease. NLPs are cytotoxic to eudicot plants, as they disturb the plant plasma membrane by binding to specific plant membrane sphingolipid receptors. Their pivotal role in plant infection and broad taxonomic distribution makes NLPs a promising target for the development of novel phytopharmaceutical compounds. To identify compounds that bind to NLPs from the oomycetes Pythium aphanidermatum and Phytophthora parasitica, a library of 587 small molecules, most of which are commercially unavailable, was screened by surface plasmon resonance. Importantly, compounds that exhibited the highest affinity to NLPs were also found to inhibit NLP-mediated necrosis in tobacco leaves and Phytophthora infestans growth on potato leaves. Saturation transfer difference-nuclear magnetic resonance and molecular modelling of the most promising compound, anthranilic acid derivative, confirmed stable binding to the NLP protein, which resulted in decreased necrotic activity and reduced ion leakage from tobacco leaves. We, therefore, confirmed that NLPs are an appealing target for the development of novel phytopharmaceutical agents and strategies, which aim to directly interfere with the function of these major microbial virulence factors. The compounds identified in this study represent lead structures for further optimization and antimicrobial product development.


Assuntos
Phytophthora/patogenicidade , Doenças das Plantas/prevenção & controle , Pythium/patogenicidade , Solanum tuberosum/genética , Simulação de Dinâmica Molecular , Necrose , Phytophthora/genética , Doenças das Plantas/parasitologia , Folhas de Planta/genética , Folhas de Planta/parasitologia , Pythium/genética , Solanum tuberosum/parasitologia , Ressonância de Plasmônio de Superfície , Nicotiana/genética , Nicotiana/parasitologia
17.
Nat Plants ; 7(4): 382-383, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33785867
18.
Nat Plants ; 7(5): 579-586, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33723429

RESUMO

Plants tailor their metabolism to environmental conditions, in part through the recognition of a wide array of self and non-self molecules. In particular, the perception of microbial or plant-derived molecular patterns by cell-surface-localized pattern recognition receptors (PRRs) induces pattern-triggered immunity, which includes massive transcriptional reprogramming1. An increasing number of plant PRRs and corresponding ligands are known, but whether plants tune their immune outputs to patterns of different biological origins or of different biochemical natures remains mostly unclear. Here, we performed a detailed transcriptomic analysis in an early time series focused to study rapid-signalling transcriptional outputs induced by well-characterized patterns in the model plant Arabidopsis thaliana. This revealed that the transcriptional responses to diverse patterns (independent of their origin, biochemical nature or type of PRR) are remarkably congruent. Moreover, many of the genes most rapidly and commonly upregulated by patterns are also induced by abiotic stresses, suggesting that the early transcriptional response to patterns is part of the plant general stress response (GSR). As such, plant cells' response is in the first instance mostly to danger. Notably, the genetic impairment of the GSR reduces pattern-induced antibacterial immunity, confirming the biological relevance of this initial danger response. Importantly, the definition of a small subset of 'core immunity response' genes common and specific to pattern response revealed the function of previously uncharacterized GLUTAMATE RECEPTOR-LIKE (GLR) calcium-permeable channels in immunity. This study thus illustrates general and unique properties of early immune transcriptional reprogramming and uncovers important components of plant immunity.


Assuntos
Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas/imunologia , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Doenças das Plantas/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Transcrição Gênica
19.
Front Plant Sci ; 11: 594827, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312187

RESUMO

Plants have evolved adaptive measures to cope with abiotic and biotic challenges simultaneously. Combinatorial stress responses require environmental signal integration and response prioritization to balance stress adaptation and growth. We have investigated the impact of salt, an important environmental factor in arid regions, on the Arabidopsis innate immune response. Activation of a classical salt stress response resulted in increased susceptibility to infection with hemibiotrophic Pseudomonas syringae or necrotrophic Alternaria brassicicola, and Botrytis cinerea, respectively. Surprisingly, pattern-triggered immunity (PTI)-associated responses were largely unaffected upon salt pre-treatment. However, we further observed a strong increase in phytohormone levels. Particularly, abscisic acid (ABA) levels were already elevated before pathogen infection, and application of exogenous ABA substituted for salt-watering in increasing Arabidopsis susceptibility toward B. cinerea infection. We propose a regulatory role of ABA in attenuating Botrytis immunity in this plant under salt stress conditions.

20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA