Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3198, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609383

RESUMO

In order to shape a tissue, individual cell-based mechanical forces have to be integrated into a global force pattern. Over the last decades, the importance of actomyosin contractile arrays, which are the key constituents of various morphogenetic processes, has been established for many tissues. Recent studies have demonstrated that the microtubule cytoskeleton mediates folding and elongation of the epithelial sheet during Drosophila morphogenesis, placing microtubule mechanics on par with actin-based processes. While these studies establish the importance of both cytoskeletal systems during cell and tissue rearrangements, a mechanistic understanding of their functional hierarchy is currently missing. Here, we dissect the individual roles of these two key generators of mechanical forces during epithelium elongation in the developing Drosophila wing. We show that wing extension, which entails columnar-to-cuboidal cell shape remodeling in a cell-autonomous manner, is driven by anisotropic cell expansion caused by the remodeling of the microtubule cytoskeleton from apico-basal to planarly polarized. Importantly, cell and tissue elongation is not associated with Myosin activity. Instead, Myosin II exhibits a homeostatic role, as actomyosin contraction balances polarized microtubule-based forces to determine the final cell shape. Using a reductionist model, we confirm that pairing microtubule and actomyosin-based forces is sufficient to recapitulate cell elongation and the final cell shape. These results support a hierarchical mechanism whereby microtubule-based forces in some epithelial systems prime actomyosin-generated forces.


Assuntos
Actomiosina , Microtúbulos , Animais , Citoesqueleto de Actina , Citoesqueleto , Drosophila
2.
J Am Soc Nephrol ; 34(6): 1039-1055, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36930055

RESUMO

SIGNIFICANCE STATEMENT: Nuclear exclusion of the cotranscription factor YAP, which is a consequence of activation of the Hippo signaling pathway, leads to FSGS and podocyte apoptosis. Ajuba proteins play an important role in the glomerular filtration barrier by keeping the Hippo pathway inactive. In nephrocytes from Drosophila melanogaster , a well-established model system for podocyte research, Ajuba proteins ensure slit diaphragm (SD) formation and function. Hippo pathway activation leads to mislocalization of Ajuba proteins, decreased SD formation, rearrangement of the actin cytoskeleton, and increased SD permeability. Targeting the kinases of the Hippo pathway with specific inhibitors in the glomerulus could, therefore, be a promising strategy for therapy of FSGS. BACKGROUND: The highly conserved Hippo pathway, which regulates organ growth and cell proliferation by inhibiting transcriptional cofactors YAP/TAZ, plays a special role in podocytes, where activation of the pathway leads to apoptosis. The Ajuba family proteins (Ajuba, LIM domain-containing protein 1 (LIMD1) and Wilms tumor protein 1-interacting protein [WTIP]) can bind and inactivate large tumor suppressor kinases 1 and 2, (LATS1/2) two of the Hippo pathway key kinases. WTIP, furthermore, connects the slit diaphragm (SD), the specialized cell-cell junction between podocytes, with the actin cytoskeleton. METHODS: We used garland cell nephrocytes of Drosophila melanogaster to monitor the role of Ajuba proteins in Hippo pathway regulation and structural integrity of the SD. Microscopy and functional assays analyzed the interplay between Ajuba proteins and LATS2 regarding expression, localization, interaction, and effects on the functionality of the SD. RESULTS: In nephrocytes, the Ajuba homolog Djub recruited Warts (LATS2 homolog) to the SD. Knockdown of Djub activated the Hippo pathway. Reciprocally, Hippo activation reduced the Djub level. Both Djub knockdown and Hippo activation led to morphological changes in the SD, rearrangement of the cortical actin cytoskeleton, and increased SD permeability. Knockdown of Warts or overexpression of constitutively active Yki prevented these effects. In podocytes, Hippo pathway activation or knockdown of YAP also decreased the level of Ajuba proteins. CONCLUSIONS: Ajuba proteins regulate the structure and function of the SD in nephrocytes, connecting the SD protein complex to the actin cytoskeleton and maintaining the Hippo pathway in an inactive state. Hippo pathway activation directly influencing Djub expression suggests a self-amplifying feedback mechanism.


Assuntos
Proteínas de Drosophila , Glomerulosclerose Segmentar e Focal , Verrugas , Animais , Via de Sinalização Hippo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Sinalização YAP , Junções Intercelulares , Proteínas de Drosophila/metabolismo
3.
Nanoscale ; 15(14): 6759-6769, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36943331

RESUMO

Plasma membrane deformations are associated with curvature-dependent protein enrichment that contributes to a wide array of cellular functions. While the spatio-temporal protein dynamics at membrane indentations is well characterized, relatively little is known about protein kinetics at outwardly deforming membrane sites. This is in part due to the lack of high throughput approaches to systematically probe the curvature-dependence of protein-membrane interactions. Here, we developed a nanopatterned array for multiplexed analysis of protein dynamics at negatively curved cellular membranes. Taking advantage of this robust and versatile platform, we explored how membrane shape influences the prototypic negative curvature sensing protein BAIAP2 and its effector proteins. We find assembly of multi-protein signaling hubs and increased actin polymerization at outwardly deformed membrane sections, indicative of curvature-dependent BAIAP2 activation. Collectively, this study presents technical and conceptual advancements towards a quantitative understanding of spatio-temporal protein dynamics at negatively curved membranes.


Assuntos
Transdução de Sinais , Membrana Celular/metabolismo , Proteínas do Tecido Nervoso/metabolismo
4.
Genet Med ; 25(5): 100798, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36727596

RESUMO

PURPOSE: Primary ciliary dyskinesia (PCD) is a heterogeneous disorder that includes respiratory symptoms, laterality defects, and infertility caused by dysfunction of motile cilia. Most PCD-causing variants result in abnormal outer dynein arms (ODAs), which provide the generative force for respiratory ciliary beating and proper mucociliary clearance. METHODS: In addition to studies in mouse and planaria, clinical exome sequencing and functional analyses in human were performed. RESULTS: In this study, we identified homozygous pathogenic variants in CLXN (EFCAB1/ODAD5) in 3 individuals with laterality defects and respiratory symptoms. Consistently, we found that Clxn is expressed in mice left-right organizer. Transmission electron microscopy depicted ODA defects in distal ciliary axonemes. Immunofluorescence microscopy revealed absence of CLXN from the ciliary axonemes, absence of the ODA components DNAH5, DNAI1, and DNAI2 from the distal axonemes, and mislocalization or absence of DNAH9. In addition, CLXN was undetectable in ciliary axonemes of individuals with defects in the ODA-docking machinery: ODAD1, ODAD2, ODAD3, and ODAD4. Furthermore, SMED-EFCAB1-deficient planaria displayed ciliary dysmotility. CONCLUSION: Our results revealed that pathogenic variants in CLXN cause PCD with defects in the assembly of distal ODAs in the respiratory cilia. CLXN should be referred to as ODA-docking complex-associated protein ODAD5.


Assuntos
Cílios , Síndrome de Kartagener , Humanos , Animais , Camundongos , Cílios/genética , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/patologia , Proteínas de Ligação ao Cálcio , Axonema/genética , Axonema/metabolismo , Axonema/patologia , Mutação , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo
5.
Kidney Int ; 103(5): 872-885, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36587794

RESUMO

Mutations in OSGEP and four other genes that encode subunits of the KEOPS complex cause Galloway-Mowat syndrome, a severe, inherited kidney-neurological disease. The complex catalyzes an essential posttranscriptional modification of tRNA and its loss of function induces endoplasmic reticulum (ER) stress. Here, using Drosophila melanogaster garland nephrocytes and cultured human podocytes, we aimed to elucidate the molecular pathogenic mechanisms of KEOPS-related glomerular disease and to test pharmacological inhibition of ER stress-related signaling as a therapeutic principle. We found that ATF4, an ER stress-mediating transcription factor, or its fly orthologue Crc, were upregulated in both fly nephrocytes and human podocytes. Knockdown of Tcs3, a fly orthologue of OSGEP, caused slit diaphragm defects, recapitulating the human kidney phenotype. OSGEP cDNA with mutations found in patients lacked the capacity for rescue. Genetic interaction studies in Tcs3-deficient nephrocytes revealed that Crc mediates not only cell injury, but surprisingly also slit diaphragm defects, and that genetic or pharmacological inhibition of Crc activation attenuates both phenotypes. These findings are conserved in human podocytes where ATF4 inhibition improved the viability of podocytes with OSGEP knockdown, with chemically induced ER stress, and where ATF4 target genes and pro-apoptotic gene clusters are upregulated upon OSGEP knockdown. Thus, our data identify ATF4-mediated signaling as a molecular link among ER stress, slit diaphragm defects, and podocyte injury, and our data suggest that modulation of ATF4 signaling may be a potential therapeutic target for certain podocyte diseases.


Assuntos
Nefropatias , Podócitos , Animais , Humanos , Podócitos/patologia , Fatores de Transcrição/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Nefropatias/genética , Nefropatias/patologia , Estresse do Retículo Endoplasmático/genética , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo
6.
Cells ; 9(6)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466457

RESUMO

Scanning electron microscopy (SEM) takes advantage of distinct detectors to visualise secondary and back-scattering electrons. Here, we report an integrated approach that relies on these two detection methods to simultaneously acquire correlated information on plasma membrane topography and curvature-sensitive cytosolic protein localization in intact cell samples. We further provide detailed preparation and staining protocols, as well as a thorough example-based discussion for imaging optimisation. Collectively, the presented method enables rapid and precise analysis of cytosolic proteins adjacent to cellular membranes with a resolution of ~100 nm, without time-consuming preparations or errors induced by sequential visualisation present in fluorescence-based correlative approaches.


Assuntos
Membrana Celular/ultraestrutura , Citosol/metabolismo , Microscopia Eletrônica de Varredura , Animais , Células Cultivadas , Ouro/química , Humanos , Imuno-Histoquímica , Transporte Proteico , Reprodutibilidade dos Testes
7.
ACS Appl Bio Mater ; 3(1): 400-411, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019456

RESUMO

Understanding the action mechanisms of self-assembled photosensitizers is very important to determine the requirements that constructing monomers should fulfill to obtain nanostructures with the desired function. Here, the synthesis, supramolecular aggregation tendency, photophysical properties, and antimicrobial photodynamic activity of low-symmetry metal-free phthalocyanine are carefully examined and compared with its metalated counterpart. When exposed to the media with different pH values, striking differences in the self-assembly of these two derivatives were observed. Equilibria between active and inactive forms of this unique supramolecular system were shifted upon change of the microenvironment, influencing its biological activity against Gram-positive and Gram-negative bacteria in planktonic and biofilm states. DFT calculations helped to explain possible differences in the aggregate formation, showing that metal-ligand interaction is a key process behind the higher activity of the metalated derivative. These results point out the importance of intermolecular interactions between photosensitizers, which is essential to guide the design of self-assembled phototheranostic agents with improved performance.

8.
Soft Matter ; 15(32): 6547-6556, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31359025

RESUMO

Dendronized polymers (DPs) are large and compact main-chain linear polymers with a cylindrical shape and cross-sectional diameters of up to ∼15 nm. They are therefore considered molecular objects, and it was of interest whether given their experimentally accessible, well-defined dimensions, the density of individual DPs could be determined. We present measurements on individual, deposited DP chains, providing molecular dimensions from scanning and transmission electron microscopy and mass-per-length values from quantitative scanning transmission electron microscopy. These results are compared with density values obtained from small-angle X-ray scattering on annealed bulk specimen and with classical envelope density measurements, obtained using hydrostatic weighing or a density gradient column. The samples investigated comprise a series of DPs with side groups of dendritic generations g = 1-8. The key findings are a very large spread of the density values over all samples and methods, and a consistent increase of densities with g over all methods. While this work highlights the advantages and limitations of the applied methods, it does not provide a conclusive answer to the question of which method(s) to use for the determination of densities of individual molecular objects. We are nevertheless confident that these first attempts to answer this challenging question will stimulate more research into this important aspect of polymer and soft matter science.

9.
Nat Cell Biol ; 20(10): 1126-1133, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202051

RESUMO

Coordinated rearrangements of cytoskeletal structures are the principal source of forces that govern cell and tissue morphogenesis1,2. However, unlike for actin-based mechanical forces, our knowledge about the contribution of forces originating from other cytoskeletal components remains scarce. Here, we establish microtubules as central components of cell mechanics during tissue morphogenesis. We find that individual cells are mechanically autonomous during early Drosophila wing epithelium development. Each cell contains a polarized apical non-centrosomal microtubule cytoskeleton that bears compressive forces, whereby acute elimination of microtubule-based forces leads to cell shortening. We further establish that the Fat planar cell polarity (Ft-PCP) signalling pathway3,4 couples microtubules at adherens junctions (AJs) and patterns microtubule-based forces across a tissue via polarized transcellular stability, thus revealing a molecular mechanism bridging single cell and tissue mechanics. Together, these results provide a physical basis to explain how global patterning of microtubules controls cell mechanics to coordinate collective cell behaviour during tissue remodelling. These results also offer alternative paradigms towards the interplay of contractile and protrusive cytoskeletal forces at the single cell and tissue levels.


Assuntos
Polaridade Celular , Citoesqueleto/metabolismo , Epitélio/metabolismo , Microtúbulos/metabolismo , Pupa/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Epitélio/crescimento & desenvolvimento , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Morfogênese , Pupa/citologia , Pupa/crescimento & desenvolvimento , Imagem com Lapso de Tempo/métodos , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
10.
Elife ; 72018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29522397

RESUMO

Cell fate determination during development often requires morphogen transport from producing to distant responding cells. Hedgehog (Hh) morphogens present a challenge to this concept, as all Hhs are synthesized as terminally lipidated molecules that form insoluble clusters at the surface of producing cells. While several proposed Hh transport modes tie directly into these unusual properties, the crucial step of Hh relay from producing cells to receptors on remote responding cells remains unresolved. Using wing development in Drosophila melanogaster as a model, we show that Hh relay and direct patterning of the 3-4 intervein region strictly depend on proteolytic removal of lipidated N-terminal membrane anchors. Site-directed modification of the N-terminal Hh processing site selectively eliminated the entire 3-4 intervein region, and additional targeted removal of N-palmitate restored its formation. Hence, palmitoylated membrane anchors restrict morphogen spread until site-specific processing switches membrane-bound Hh into bioactive forms with specific patterning functions.


Assuntos
Proteínas de Drosophila/genética , Proteínas Hedgehog/genética , Morfogênese/genética , Peptídeos/genética , Asas de Animais/crescimento & desenvolvimento , Animais , Diferenciação Celular/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Lipoilação/genética , Palmitatos/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Transdução de Sinais/genética , Asas de Animais/metabolismo
11.
Org Lett ; 20(3): 752-755, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29345952

RESUMO

Silyl ketones were used for the preparation of palladium nanoparticles (PdNPs) starting with Pd(OAc)2 in dimethylformamide under irradiation with a visible light-emitting diode (LED). Variation of the silyl ketone structure allowed adjustment of the PdNP diameter (1.9 or 5.2 nm). The in situ-formed PdNPs were further stabilized with polyvinylpyrrolidone and then applied as recyclable catalysts in the Suzuki-Miyaura coupling of arylboronic acids with aryl iodides to obtain substituted biphenyls in excellent yields.

12.
Angew Chem Int Ed Engl ; 56(32): 9603-9607, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28485535

RESUMO

We present the self-assembly of redox-responsive polymer nanocontainers comprising a cyclodextrin vesicle core and a thin reductively cleavable polymer shell anchored via host-guest recognition on the vesicle surface. The nanocontainers are of uniform size, show high stability, and selectively respond to a mild reductive trigger as revealed by dynamic light scattering, transmission electron microscopy, atomic force microscopy, a quantitative thiol assay, and fluorescence spectroscopy. Live cell imaging experiments demonstrate a specific redox-responsive release and cytoplasmic delivery of encapsulated hydrophilic payloads, such as the pH-probe pyranine, and the fungal toxin phalloidin. Our results show the high potential of these stimulus-responsive nanocontainers for cell biological applications requiring a controlled delivery.


Assuntos
Sulfonatos de Arila/química , Ciclodextrinas/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Faloidina/química , Polímeros/química , Células 3T3 , Animais , Citoplasma/química , Citoplasma/metabolismo , Portadores de Fármacos/química , Camundongos , Estrutura Molecular , Oxirredução , Tamanho da Partícula
13.
Org Lett ; 19(10): 2658-2661, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28485603

RESUMO

A bisacylphosphine oxide photoinitiator was used for the light mediated preparation of palladium nanoparticles (PdNPs) with a small diameter of 2.8 nm. All starting materials are commercially available, and PdNP synthesis is experimentally very easy to conduct. The PdNP-hybrid material was applied as catalyst for the semihydrogenation of various internal alkynes to provide the corresponding alkenes in excellent yields (up to 99%) and Z-selectivities (Z/E ratios up to 99/1).

14.
Chemistry ; 23(25): 6014-6018, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27734533

RESUMO

A facile light-mediated preparation of small palladium nanoparticles (PdNPs) with a diameter of 1.3 nm and low dispersity by using low-priced and readily prepared photoactive polymers is presented. These polymers act as reagents for the photochemical reduction of Pd ions and they are also stabilizers for the PdNPs generated in situ. The PdNP-polymer hybrid materials prepared by this reliable approach are efficient hydrogenation catalysts that show high activity and Z-selectivity in the semi-hydrogenation of alkynes. These PdNP-catalyst hybrid materials can be readily recycled and reused up to five times.

15.
Biophys J ; 110(4): 758-65, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26910419

RESUMO

Cryogenic microscopy methods have gained increasing popularity, as they offer an unaltered view on the architecture of biological specimens. As a prerequisite, samples must be handled under cryogenic conditions below their recrystallization temperature, and contamination during sample transfer and handling must be prevented. We present a high-vacuum cryo-transfer system that streamlines the entire handling of frozen-hydrated samples from the vitrification process to low temperature imaging for scanning transmission electron microscopy and transmission electron microscopy. A template for cryo-electron microscopy and multimodal cryo-imaging approaches with numerous sample transfer steps is presented.


Assuntos
Microscopia Crioeletrônica/métodos , Vácuo , Artefatos , Temperatura Baixa , Microscopia Crioeletrônica/instrumentação , Gelo , Vírus do Mosaico do Tabaco/ultraestrutura
16.
Angew Chem Int Ed Engl ; 54(43): 12612-7, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26315137

RESUMO

Gold nanoparticles (AuNPs) are subjects of broad interest in scientific community due to their promising physicochemical properties. Herein we report the facile and controlled light-mediated preparation of gold nanoparticles through a Norrish type I reaction of photoactive polymers. These carefully designed polymers act as reagents for the photochemical reduction of gold ions, as well as stabilizers for the in situ generated AuNPs. Manipulating the length and composition of the photoactive polymers allows for control of AuNP size. Nanoparticle diameter can be controlled from 1.5 nm to 9.6 nm.


Assuntos
Ouro/química , Luz , Nanopartículas Metálicas/química , Polímeros/química , Nanopartículas Metálicas/ultraestrutura , Nanotecnologia/métodos , Oxirredução , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA