Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(22): 13130-13135, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32548499

RESUMO

The Freundlich isotherm is a classic model widely used to analyze the equilibrium of solution-phase adsorption. Further analysis of the adsorption mechanism has, however, been hindered by the empirical nature of the Freundlich isotherm. By deriving the Freundlich isotherm from the Gibbs equation, this study presents a novel interpretation of the classic model with theoretical definitions for model parameters. The new interpretation shows that the inverse of the Freundlich power is linearly correlated with the molecular weight of an adsorbate for congeners with similar chemical structures, revealing a previously unappreciated dependence of adsorption capacity on the molecular size of the adsorbate. The new interpretation also shows a linear correlation between the Freundlich power and the logarithm of the equilibrium constant, exposing the existence of an isocapacity concentration for the adsorption of congeners. The quantitative structure-activity relationships, known as QSARs, represented by these linear correlations are validated using experimental data reported in the literature, including the adsorption of aliphatic alcohols by an activated carbon and the adsorption of aromatic hydrocarbons adsorption by an aquitard soil. These results provide an unprecedented explanatory power to understanding experimental observations of solution-phase adsorption using the Freundlich isotherm.

2.
J Colloid Interface Sci ; 508: 75-86, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28822863

RESUMO

Remediation and prevention of environmental contamination by toxic metals is an ongoing issue. Additionally, improving water filtration systems is necessary to prevent toxic metals from circulating through the water supply. Graphene oxide (GO) is a highly sorptive material for a variety of heavy metals under different ionic strength conditions over a wide pH range, making it a promising candidate for use in metal adsorption from contaminated sites or in filtration systems. We present X-ray absorption fine structure (XAFS) spectroscopy results investigating the binding environment of Cd (II), U(VI) and Pb(II) ions onto multi-layered graphene oxide (MLGO). This study shows that the binding environment of each metal onto the MLGO is unique, with different behaviors governing the sorption as a function of pH. For Cd sorption to MLGO, the same mechanism of electrostatic attraction between the MLGO and the Cd+2 ions surrounded by water molecules prevails over the entire pH range studied. The U(VI), present in solution as the uranyl ion, shows only subtle changes as a function of pH, likely due to the varied speciation of uranium in solution. The adsorption of the U to the MLGO is through a covalent, inner-sphere bond. The only metal from this study where the dominant adsorption mechanism to the MLGO changes with pH is Pb. In this case, under lower pH conditions, Pb is bound onto the MLGO through dominantly outer-sphere, electrostatic adsorption, while under higher pH conditions, the bonding changes to be dominated by inner-sphere, covalent adsorption. Since each of the metals in this study show unique binding properties, it is possible that MLGO could be engineered to effectively adsorb specific metal ions from solution and optimize environmental remediation or filtration for each metal.

3.
Langmuir ; 31(26): 7401-9, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26053766

RESUMO

Direct growth of vertically aligned carbon nanotube (CNT) arrays on substrates requires the deposition of an aluminum oxide buffer (AOB) layer to prevent the diffusion and coalescence of catalyst nanoparticles. Although AOB layers can be readily created on flat substrates using a variety of physical and chemical methods, the preparation of AOB layers on substrates with highly curved surfaces remains challenging. Here, we report a new solution-based method for preparing uniform layers of AOB on highly curved surfaces by the chemical bath deposition of basic aluminum sulfate and annealing. We show that the thickness of AOB layer can be increased by extending the immersion time of a substrate in the chemical bath, following the classical Johnson-Mehl-Avrami-Kolmogorov crystallization kinetics. The increase of AOB thickness in turn leads to the increase of CNT length and the reduction of CNT curviness. Using this method, we have successfully synthesized dense aligned CNT arrays of micrometers in length on substrates with highly curved surfaces including glass fibers, stainless steel mesh, and porous ceramic foam.

4.
Langmuir ; 31(21): 5820-6, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25974679

RESUMO

The cation-π interaction is proposed as an important mechanism for the adsorption of aromatic hydrocarbons having non-zero quadrupole moments by mineral surfaces. Direct evidence supporting such a mechanism is, however, limited. Using the model mineral calcite, we probe the cation-π interaction with adsorbed benzene, toluene, and ethylbenzene (BTE) molecules using attenuated total reflectance Fourier transform infrared spectroscopy. We show that the presence of calcite increases the energy required to excite the synchronized bending of aromatic C-H bonds of BTE molecules. The unique conformation of this vibrational mode indicates that the planar aromatic rings of BTE molecules are constrained in a tilted face-down position by the cation-π interaction, as further confirmed by density functional theory calculations. Our results suggest that the shift of the excitation energy of the aromatic C-H bending may be used as an infrared signature for the cation-π interaction occurring on mineral surfaces.

5.
Langmuir ; 31(8): 2366-71, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25656732

RESUMO

Rhodochrosite (MnCO3) is a model mineral representing carbonate aerosol particles containing redox-active elements that can influence particle surface reconstruction in humid air, thereby affecting the heterogeneous transformation of important atmospheric constituents such as nitric oxides, sulfur dioxides, and organic acids. Using in situ atomic force microscopy, we show that the surface reconstruction of rhodochrosite in humid oxygen leads to the formation and growth of oxide nanostructures. The oxidative reconstruction consists of two consecutive processes with distinctive time scales, including a long waiting period corresponding to slow nucleation and a rapid expansion phase corresponding to fast growth. By varying the relative humidity from 55 to 78%, we further show that increasing humidity has opposing effects on the two processes, accelerating nucleation from 2.8(±0.2) × 10(-3) to 3.0(±0.2) × 10(-2) h(-1) but decelerating growth from 7.5(±0.3) × 10(-3) to 3.1(±0.1) × 10(-3) µm(2) h(-1). Through quantitative analysis, we propose that nanostructure nucleation is controlled by rhodochrosite surface dissolution, similar to the dissolution-precipitation mechanism proposed for carbonate mineral surface reconstruction in aqueous solution. To explain nanostructure growth in humid oxygen, a new Cabrera-Mott mechanism involving electron tunneling and solid-state diffusion is proposed.

6.
Nat Commun ; 6: 5929, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25581366

RESUMO

Particle-stabilized Pickering emulsions have shown unusual behaviours such as the formation of non-spherical droplets and the sudden halt of coalescence between individual droplets. Here we report another unusual behaviour of Pickering emulsions-the simultaneous coalescence of multiple droplets in a single event. Using latex particles, silica particles and carbon nanotubes as model stabilizers, we show that multi-body coalescence can occur in both water-in-oil and oil-in-water emulsions. The number of droplets involved in the nth coalscence event equals four times the corresponding number of the tetrahedral sequence in close packing. Furthermore, coalescence is promoted by repulsive latex and silica particles but inhibited by attractive carbon nanotubes. The revelation of multi-body coalescence is expected to help better understand Pickering emulsions in natural systems and improve their designs in engineering applications.

7.
ACS Appl Mater Interfaces ; 6(22): 20309-16, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25365587

RESUMO

Electrochemical treatment of chromium-containing wastewater has the advantage of simultaneously reducing hexavalent chromium (CrVI) and reversibly adsorbing the trivalent product (CrIII), thereby minimizing the generation of waste for disposal and providing an opportunity for resource reuse. The application of electrochemical treatment of chromium is often limited by the available electrochemical surface area (ESA) of conventional electrodes with flat surfaces. Here, we report the preparation and evaluation of carbon nanotube (CNT) electrodes consisting of vertically aligned CNT arrays directly grown on stainless steel mesh (SSM). We show that the 3-D organization of CNT arrays increases ESA up to 13 times compared to SSM. The increase of ESA is correlated with the length of CNTs, consistent with a mechanism of roughness-induced ESA enhancement. The increase of ESA directly benefits CrVI reduction by proportionally accelerating reduction without compromising the electrode's ability to adsorb CrIII. Our results suggest that the rational design of electrodes with hierarchical structures represents a feasible approach to improve the performance of electrochemical treatment of contaminated water.

8.
ACS Appl Mater Interfaces ; 6(12): 9426-34, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24806877

RESUMO

Carbon nanotubes (CNTs) are promising nanomaterials that have the potential to revolutionize water treatment practices in the future. The direct use of unbounded CNTs, however, poses health risks to humans and ecosystems because they are difficult to separate from treated water. Here, we report the design and synthesis of carbon nanotube ponytails (CNPs) by integrating CNTs into micrometer-sized colloidal particles, which greatly improves the effectiveness of post-treatment separation using gravitational sedimentation, magnetic attraction, and membrane filtration. We further demonstrate that CNPs can effectively perform major treatment tasks including adsorption, disinfection, and catalysis. Using model pollutants such as methylene blue, Escherichia coli, and p-nitrophenol, we show that all the surfaces of individual CNTs in CNPs are accessible during water treatment. Our results suggest that the rational design of hierarchical structures represents a feasible approach to develop nanomaterials for engineering applications such as water and wastewater treatment.


Assuntos
Nanotubos de Carbono/química , Poluentes Químicos da Água/química , Purificação da Água , Adsorção , Filtração , Humanos , Nitrofenóis/química , Água/química
9.
Water Res ; 47(12): 4198-205, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23582309

RESUMO

Water contaminated by oil and gas production poses challenges to the management of America's water resources. Here we report the design, fabrication, and laboratory evaluation of multi-walled carbon nanotubes decorated with superparamagnetic iron-oxide nanoparticles (SPIONs) for oil-water separation. As revealed by confocal laser-scanning fluorescence microscopy, the magnetic carbon nanotubes (MCNTs) remove oil droplets through a two-step mechanism, in which MCNTs are first dispersed at the oil-water interface and then drag the droplets with them out of water by a magnet. Measurements of removal efficiency with different initial oil concentration, MCNT dose, and mixing time show that kinetics and equilibrium of the separation process can be described by the Langmuir model. Separation capacity qt is a function of MCNT dose m, mixing time t, and residual oil concentration Ce at equilibrium: [Formula in text] where qmax, kw, and K are maximum separation capacity, wrapping rate constant, and equilibrium constant, respectively. Least-square regressions using experimental data estimate qmax = 6.6(± 0.6) g-diesel g-MCNT(-1), kw = 3.36(± 0.03) L g-diesel(-1) min(-1), and K = 2.4(± 0.2) L g-diesel(-1). For used MCNTs, we further show that over 80% of the separation capacity can be restored by a 10 min wash with 1 mL ethanol for every 6 mg MCNTs. The separation by reusable MCNTs provides a promising alternative strategy for water treatment design complementary to existing ones such as coagulation, adsorption, filtration, and membrane processes.


Assuntos
Fenômenos Magnéticos , Nanotubos de Carbono/química , Óleos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Dextranos/química , Nanopartículas de Magnetita/química , Nanotubos de Carbono/ultraestrutura , Água/química
10.
Cell Microbiol ; 14(4): 500-16, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22151739

RESUMO

In previous studies we showed that the replication of Cryptococcus neoformans in the lung environment is controlled by the glucosylceramide (GlcCer) synthase gene (GCS1), which synthesizes the membrane sphingolipid GlcCer from the C9-methyl ceramide. Here, we studied the effect of the mutation of the sphingolipid C9 methyltransferase gene (SMT1), which adds a methyl group to position 9 of the sphingosine backbone of ceramide. The C. neoformans Δsmt1 mutant does not make C9-methyl ceramide and, thus, any methylated GlcCer. However, it accumulates demethylated ceramide and demethylated GlcCer. The Δsmt1 mutant loses more than 80% of its virulence compared with the wild type and the reconstituted strain. Interestingly, growth of C. neoformans Δsmt1 in the lung was decreased and C. neoformans cells were contained in lung granulomas, which significantly reduced the rate of their dissemination to the brain reducing the onset of meningoencephalitis. Thus, using fluorescent spectroscopy and atomic force microscopy we compared the wild type and Δsmt1 mutant and found that the altered membrane composition and GlcCer structure affects fungal membrane rigidity, suggesting that specific sphingolipid structures are required for proper fungal membrane organization and integrity. Therefore, we propose that the physical structure of the plasma membrane imparted by specific classes of sphingolipids represents a critical factor for the ability of the fungus to establish virulence.


Assuntos
Membrana Celular/metabolismo , Cryptococcus neoformans/patogenicidade , Glucosilceramidas/metabolismo , Lipídeos de Membrana/metabolismo , Metiltransferases/metabolismo , Esfingolipídeos/metabolismo , Animais , Encéfalo/microbiologia , Encéfalo/patologia , Membrana Celular/genética , Permeabilidade da Membrana Celular , Infecções do Sistema Nervoso Central/microbiologia , Criptococose/microbiologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Glucosilceramidas/genética , Granuloma/microbiologia , Granuloma/patologia , Interações Hospedeiro-Patógeno , Concentração de Íons de Hidrogênio , Pulmão/microbiologia , Pulmão/patologia , Lipídeos de Membrana/genética , Meningoencefalite/microbiologia , Meningoencefalite/patologia , Metilação , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos CBA , Microscopia de Força Atômica , Mutação , Espectrometria de Fluorescência , Esfingolipídeos/genética , Esfingosina/genética , Esfingosina/metabolismo , Virulência
11.
Proc Natl Acad Sci U S A ; 108 Suppl 1: 4666-71, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20855611

RESUMO

As predominant intestinal symbiotic bacteria, Bacteroides are essential in maintaining the health of the normal mammalian host; in return, the host provides a niche with plentiful nutrients for the symbionts. However, the intestinal environment is replete with chemical, physical, and biological challenges that require mechanisms for prompt and adept sensing of and responses to stress if the bacteria are to survive. Herein we propose that to persist in the intestine Bacteroides take advantage of their unusual bacterial sphingolipids to mediate signaling pathways previously known to be available only to higher organisms. Sphingolipids convey diverse signal transduction and stress response pathways and have profound physiological impacts demonstrated in a variety of eukaryotic cell types. We propose a mechanism by which the formation of specific sphingolipid membrane microdomains initiates signaling cascades that facilitate survival strategies within the bacteria. Our preliminary data suggest that sphingolipid signaling plays an important role in Bacteroides physiology, enabling these bacteria to persist in the intestine and to perform other functions related to symbiosis.


Assuntos
Bacteroides/fisiologia , Membrana Celular/metabolismo , Intestinos/microbiologia , Transdução de Sinais/fisiologia , Esfingolipídeos/metabolismo , Estresse Fisiológico/fisiologia , Bacteroides/metabolismo , Colesterol/metabolismo , Humanos , Microscopia de Força Atômica , Esfingolipídeos/biossíntese , Esfingolipídeos/química
12.
Environ Sci Technol ; 44(4): 1366-72, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20095528

RESUMO

Hydroxyapatite (HAP) has been widely used to immobilize many cationic heavy metals in water and soils. Compared with its strong sorption for metal cations, the abilities of HAP to sorb metal anions, such as arsenic, are less significant. Improving HAP sorption for anionic arsenic species is important for expanding its application potential because the presence of arsenic in the environment has raised serious health concerns and there is need for cost-effective remediation methods. In this work, we report an innovative method of copper doping to improve a synthetic HAP sorption for arsenate, which is a primary aqueous arsenic species, in simulated groundwaters. The undoped HAP and copper doped HAP (CuHAP) were characterized with XRD, FTIR, N(2) adsorption, and SEM, and then evaluated as sorbents for arsenate removal tests. The experimental results suggest that copper doping changed the morphology and increased the surface area of HAP. The CuHAP sorbed 1.6-9.1x more arsenate than the undoped HAP did in a simulated groundwater at pH of 7.7-8.0. The improved arsenate sorption is presumably due to the increase in surface area of HAP as a result of copper doping. In addition to the copper doping level, the arsenate sorption to HAP and CuHAP can also be increased with increasing water pH and calcium concentration. The experimental data indicate that sorbent dissolution is an important factor governing arsenate sorption to HAP and CuHAP.


Assuntos
Arseniatos/química , Cobre/química , Durapatita/química , Movimentos da Água , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura
13.
Environ Sci Technol ; 43(13): 4967-72, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19673293

RESUMO

Nanostructures grown under natural conditions can modify the layout of adhesion on mineral surfaces. Using force-volume microscopy and a silicon-nitride probe, we measure changes in adhesion when a patchy overgrowth of manganese oxide nanostructures forms on the surface of rhodochrosite. For the most part, the observations show that the adhesive force to the nanostructures is dominated by van-der-Waals attraction. Measurements made across an area of the surface provide a frequency distribution of adhesive forces, and the mode of this distribution is 166 pN at pH 5.0, increasing to a maximum of 692 pN at pH 7.1, followed by a decrease to 275 pN at pH 9.7. At a few sampling locations over some nanostructures, electrostatic repulsion overtakes van-der-Waals attraction and thus results in negative adhesive forces (i.e., repulsion). Local roughness causes this effect. In comparison to the oxide nanostructures, the exposed rhodochrosite substrate has negligible adhesive force with the probe over the same pH range, suggesting both weak van-der-Waals attraction and weak electrostatic repulsion over this pH range. The quantitative mapping of adhesive force applied more generally to the study of other nanostructures can lead to an improved mechanistic understanding of how nanostructure growth influences contaminant immobilization and bacterial attachment.


Assuntos
Carbono/química , Compostos de Manganês/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Óxidos/química , Adesividade , Adsorção , Aderência Bacteriana , Concentração de Íons de Hidrogênio , Silício/química , Eletricidade Estática , Estresse Mecânico , Propriedades de Superfície
14.
Environ Sci Technol ; 42(18): 6883-9, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18853804

RESUMO

Nanostructures formed by chemical reaction can modify the interfacial forces present in aqueous solution near a surface. This study uses force-volume microscopyto explore this phenomenon for the growth of manganese oxide nanostructures on rhodochrosite. The interfacial forces above the oxide nanostructures are dominated by electrostatic repulsion for probe-surface separations greater than ca. 2 nm but are overtaken by van der Waals attraction for shorter distances. Across the investigated pH range 5.0-9.7, the maximum repulsive force occurs 2.4 (+/-1.1) nm above the oxide nanostructures. The magnitude of the repulsive force decreases from pH 5.0 to 6.5, reaches its minimum at 6.5, and then increases steadily up to pH 9.7. Specifically, fmax(pN) = 23(+/-4)[6.8(+/-2.1) - pH] for pH < 6.5 and fmax(pN)= 19(+/-2)[pH - 6.1(+/-1.0)] for pH > or = 6.5. This dependence indicates that oxide nanostructures have a point of zero charge in the pH range 6-7. In comparison to the nanostructures, the rhodochrosite substrate induces only small interfacial forces in the same pH range, suggesting a neutral or weakly charged surface. The quantitative mapping of interfacial forces, along with the associated influencing factors such as pH or growth of nanostructures, provides a basis for more sophisticated and accurate modeling of processes affecting contaminant immobilization and bacterial attachment on mineral surfaces under natural conditions.


Assuntos
Fenômenos Mecânicos , Nanoestruturas/química , Concentração de Íons de Hidrogênio , Óxidos/química , Propriedades de Superfície
15.
Langmuir ; 24(6): 2519-24, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18288869

RESUMO

Thin films of nanostructures alter the electrical properties of mineral surfaces and thereby affect reactions with charged species such as metal ions and biological cells. In this study, electric-force microscopy is used to probe the electrical properties of a heterogeneous layout of manganese oxide nanostructures grown as a film on a MnCO3 substrate. The role of water sorption is examined by carrying out experiments for increasing relative humidity (RH). Electric-force images collected with a negative dc tip bias show that the apparent heights of the nanostructures decrease from +3.4 nm at 16% RH to +0.7 nm at 33% RH to -5.6 nm at 74% RH, although the topographic height is 2.3 nm regardless of RH. The apparent heights for a positive dc bias also decrease with increasing RH from -3.5 nm at 16% RH to -8.9 nm at 74%. The explanation for these trends is that the dominant electric-force transitions with increasing RH from an electrostatic force attributable to surface potential to a polarization force arising from hydrated, mobile surface ions including Mn2+ and CO3(2-). The positive-to-negative trend in apparent heights implies that either the density or the intrinsic mobility (or both) of mobile ions over the substrate exceeds that over the nanostructures, implying increased water sorption over the former compared to the latter. Ridges around the perimeter of the nanostructures also develop above 40% RH for images collected using a negative dc tip bias. A tip-induced gradient of net positive charge near the nanostructure edges, which implies the nonequivalence of cations and anions there, explain this observation. The findings of this study show that thin films of nanostructures on mineral surfaces have complex but measurable RH-dependent electrical properties.

16.
Environ Sci Technol ; 41(18): 6491-7, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17948799

RESUMO

Nanostructures can form on mineral surfaces through reactions with H2O or O2 in the natural environment. In this study, nanostructures on the (1014) surfaces of calcite and rhodochrosite are characterized by their surface potentials using Kelvin probe force microscopy. Water-induced nanostructures on calcite have a topographic height of 1.1 (+/-0.6) nm and an excess surface potential of 126 (+/-31) mV at 45% relative humidity. The corresponding values for oxygen-induced nanostructures on rhodochrosite at the same RH are 1.3 (+/-0.7) nm and 271 (+/-14) mV, respectively. For increasing relative humidity on calcite, the topographic height of the nanostructures increases while their excess surface potential remains unchanged. In comparison, on rhodochrosite thetopographic height remains unchanged for increasing relative humidity but excess surface potential decreases. The nonzero excess surface potentials indicate that the nanostructures have compositions different from their parent substrates. The surface-potential heterogeneity associated with the distributed nanostructures has important implications for reactivity in both gaseous and aqueous environments. Taking into consideration such heterogeneities, which are not included in state-of-the-art models, should improve the accuracy of the predictions of contaminantfate and transport in natural environments.


Assuntos
Carbonato de Cálcio/química , Carbonatos/química , Manganês/química , Nanoestruturas/química , Microscopia de Varredura por Sonda/métodos , Propriedades de Superfície , Água/química
17.
Environ Sci Technol ; 41(9): 3220-5, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17539529

RESUMO

The relative reactivity of chlorine with amino acids is an important determinant of the resulting chlorination products in systems where chlorine is the limiting reagent, for example, in the human gastrointestinal tract after consumption of chlorine-containing water, or during food preparation with chlorinated water. Since few direct determinations of the initial reactivity of chlorine with amino acids have been made, 17 amino acids were compared in this study using competitive kinetic principles. The experimental results showed that (1) most amino acids have similar initial reactivities at neutral pH; (2) amino acids with thiol groups such as methionine and cysteine are exceptionally reactive and produce sulfoxides; (3) amino acids without thiol groups primarily undergo monochlorination of the amino nitrogen; and (4) glycine and proline are the least reactive. Dichlorination was estimated to occur with approximately 26% of the amino acid groups when the total amino acid: chlorine concentrations were equal.


Assuntos
Aminoácidos/química , Cloro/química , Cromatografia Líquida de Alta Pressão , Desinfetantes/química , Cinética , Purificação da Água
18.
Environ Sci Technol ; 40(5): 1469-77, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16568758

RESUMO

Glycine is an important precursor of cyanogen chloride (CNCl)--a disinfection byproduct (DBP) found in chlorinated drinking water. To model CNCl formation from glycine during chlorination, the mechanism and kinetics of the reaction between glycine and free chlorine were investigated. Kinetic experiments indicated that CNCI formation was limited by either the decay rates of N,N-dichloroglycine or a proposed intermediate, N-chloroiminocarboxylate, CIN=CHCO2-. Only the anionic form of N,N-dichloroglycine, NCl2CH2CO2-, however, decays to form CNCl, while the protonated neutral species forms N-chloromethylimine. At pH > 6, glycine-nitrogen is stoichiometrically converted to CNCI, while conversion decreases at lower pH due to the formation of N-chloromethylimine. Under conditions relevant to drinking water treatment, i.e., at pH 6 to 8 and with free chlorine in excess, a simplified rate expression for the concentration of glycine-nitrogen converted to CNCl, [CNCl]f, applies: dt/d[CNCl]f = k2*[Cl2-Gly](T,o)exp(-k2*t) where [Cl2-Gly]T,o is the initial concentration of total N,N-dichloroglycine, k2* is the first-order decay constant for CIN=CHCO2-, k2*(s(-1)) = 10(12)(+/-4) exp(-1.0(+/-0.3) x 10(4)/T), and T is the absolute temperature in K. Kinetic expressions for d[CNCl]/dt when free chlorine is in excess, however, must also account for the significant decay of CNCl by hypochlorite-catalyzed hydrolysis, which has been characterized in previous studies. Although CNCl formation is independent of the free chlorine concentration, higher chlorine concentrations promote its hydrolysis.


Assuntos
Cloro/química , Cianetos/química , Glicina/química , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Nitrogênio/química , Espectrometria de Massas por Ionização por Electrospray , Temperatura
19.
Environ Sci Technol ; 40(5): 1478-84, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16568759

RESUMO

Amino acids have been cited as potential precursors of the disinfection byproduct cyanogen chloride in chlorinated drinking water. Screening experiments with 17 amino acids were performed in this study to comprehensively identify important CNCl precursors. Among this set, only glycine was found to yield detectable CNCl (i.e., > 0.6% yields). Additional experiments were conducted to estimate the relative significance of glycine as a CNCI precursor in water samples collected from the Huron River, Michigan, by concurrently characterizing the amino acid content and monitoring CNCI yields after chlorination. Chlorine was added at slightly less than the sample breakpoint dose to optimize CNCl formation and stability in the samples. On the basis of previous determinations that glycine-nitrogen is stoichiometrically converted to CNCI-N at pH > 6, it was estimated that glycine may account for 42-45% of the CNCI formed in the river water samples (pH 8.2). The kinetic profile of CNCl formation in the sample, with a half-life of about 20 min, indicated that both rapid and slower formation pathways were important. Glycine formation of CNCl, with a half-life of 4 min, is likely to contribute significantly to the rapidly formed CNCI, while unidentified precursors must accountfor the slower pathway. Non-glycine-derived CNCl precursors in this water source were further examined to determine if they were largely proteinaceous in character using a technique known as immobilized metal ion affinity chromatography (IMAC). These experiments demonstrated that copper-loaded IMAC resins were much more effective in removing glycine than other CNCI precursor compounds in the sample matrix. The unidentified CNCI precursor components, therefore, are not likely to be proteinaceous and are more likely to be associated with the fulvic/humic fraction of organic matter.


Assuntos
Cloro/química , Cianetos/análise , Abastecimento de Água/análise , Aminoácidos/análise , Cromatografia de Afinidade
20.
Environ Sci Technol ; 38(22): 6037-43, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15573604

RESUMO

Cyanogen chloride (CNCl) is a disinfection byproduct found in chlorinated and chloraminated drinking water. Although there is an apparent greater association of CNCI with chloraminated water relative to chlorination systems, it was not clear whether these phenomenological observations are explained by differences in the stability or formation potentials of CNCI between the two disinfectants. In this study, the stability of CNCl was examined in the presence of free chlorine and monochloramine using membrane introduction mass spectrometry. CNCI decomposes relatively rapidly when free chlorine is present but is stable in the presence of monochloramine. The decomposition kinetics and observed reaction products are consistent with a hypochlorite-catalyzed hydrolysis mechanism, and the rate law is described by (d[CNCl]/dt) = - kOCl[CNCl][OCl-]. At 25 degrees C, pH 7, and a free chlorine residual of 0.5 mg/L as Cl2, the half-life of CNCl is approximately 60 min, suggesting significant decomposition is expected over disinfection time scales. Under some winter season temperature conditions, however, the decay half-life of CNCl can be longer than typical disinfection contact times. The results of this study demonstrate that the observed association of CNCl with chloramination systems can in part be explained by the differences in its stability with chlorine and chloramines.


Assuntos
Cloraminas/química , Cloro/química , Cianetos/química , Desinfetantes/química , Purificação da Água/métodos , Abastecimento de Água/normas , Cianetos/análise , Desinfetantes/análise , Monitoramento Ambiental/métodos , Meia-Vida , Cinética , Oxirredução , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA