Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 102(6): 1154-1164, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30673440

RESUMO

Shot hole borer (SHB)-Fusarium dieback (FD) is a new pest-disease complex affecting numerous tree species in California and is vectored by two distinct, but related ambrosia beetles (Euwallacea sp. nr. fornicatus) called polyphagous shot hole borer (PSHB) and Kuroshio shot hole borer (KSHB). These pest-disease complexes cause branch dieback and tree mortality on numerous wildland and landscape tree species, as well as agricultural tree species, primarily avocado. The recent discovery of KSHB in California initiated an investigation of fungal symbionts associated with the KSHB vector. Ten isolates of Fusarium sp. and Graphium sp., respectively, were recovered from the mycangia of adult KSHB females captured in three different locations within San Diego County and compared with the known symbiotic fungi of PSHB. Multigene phylogenetic analyses of the internal transcribed spacer region (ITS), translation elongation factor-1 alpha (TEF1-α), and RNA polymerase II subunit (RPB1, RPB2) regions as well as morphological comparisons revealed that two novel fungal associates Fusarium kuroshium sp. nov. and Graphium kuroshium sp. nov. obtained from KSHB were related to, but distinct from the fungal symbionts F. euwallaceae and G. euwallaceae associated with PSHB in California. Pathogenicity tests on healthy, young avocado plants revealed F. kuroshium and G. kuroshium to be pathogenic. Lesion lengths from inoculation of F. kuroshium were found to be significantly shorter compared with those caused by F. euwallaceae, while no difference in symptom severity was detected between Graphium spp. associated with KSHB and PSHB. These findings highlight the pest disease complexes of KSHB-FD and PSHB-FD as distinct, but collective threats adversely impacting woody hosts throughout California.


Assuntos
Ascomicetos/genética , Besouros/microbiologia , Fusarium/genética , Doenças das Plantas/microbiologia , Simbiose , Animais , Ascomicetos/fisiologia , California , Besouros/fisiologia , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Fusarium/fisiologia , Persea/microbiologia , Filogenia
2.
Plant Dis ; 102(7): 1307-1315, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30673581

RESUMO

Fusarium dieback (FD) is a new vascular disease of hardwood trees caused by Fusarium spp. and other associated fungal species which are vectored by two recently introduced and highly invasive species of ambrosia beetle (Euwallacea spp. nr. fornicatus). One of these ambrosia beetles is known as the polyphagous shot hole borer (PSHB) and the other as the Kuroshio shot hole borer (KSHB). Together with the fungi that they vector, this pest-disease complex is known as the shot hole borer-Fusarium dieback (SHB-FD) complex. Mitigation of this pest-disease complex currently relies on tree removal; however, this practice is expensive and impractical given the wide host range and rapid advancement of the beetles throughout hardwoods in southern California. This study reports on the assessment of various pesticides for use in the management of SHB-FD. In vitro screening of 13 fungicides revealed that pyraclostrobin, trifloxystrobin, and azoxystrobin generally have lower effective concentration that reduces 50% of mycelial growth (EC50) values across all fungal symbionts of PSHB and KSHB; metconazole was found to have lower EC50 values for Fusarium spp. and Paracremonium pembeum. Triadimefon and fluxapyroxad were not capable of inhibiting any fungal symbiont at the concentrations tested. A 1-year field study showed that two insecticides, emamectin benzoate alone and in combination with propiconazole, and bifenthrin, could significantly reduce SHB attacks. Two injected fungicides (tebuconazole and a combination of carbendazim and debacarb) and one spray fungicide (metconazole) could also significantly reduce SHB attacks. Bioassays designed to assess fungicide retention 1 year postapplication revealed that six of the seven fungicides exhibited some level of inhibition in vitro and all thiabendazole-treated trees sampled exhibiting inhibition. This study has identified several pesticides which can be implemented as part of an integrated pest management strategy to reduce SHB infestation in low to moderately infested landscape California sycamore trees and potentially other landscape trees currently affected by SHB-FD.


Assuntos
Besouros/microbiologia , Fungicidas Industriais/farmacologia , Fusarium/fisiologia , Árvores/microbiologia , Árvores/parasitologia , Animais , California , Besouros/classificação , Fusarium/classificação , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Insetos Vetores/microbiologia , Inseticidas/farmacologia , Espécies Introduzidas , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Piretrinas/farmacologia , Especificidade da Espécie , Triazóis/farmacologia
3.
Mycologia ; 108(2): 313-29, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26740544

RESUMO

Fusarium euwallaceae is a well-characterized fungal symbiont of the exotic ambrosia beetle Euwallacea sp. (polyphagous shot hole borer [PSHB]), together inciting Fusarium dieback on many host plants in Israel and California. Recent discoveries of additional fungal symbionts within ambrosia beetle mycangia suggest these fungi occur as communities. Colony-forming units of Graphium euwallaceae sp. nov. and Paracremonium pembeum sp. nov., two novel fungal associates of PSHB from California, grew from 36 macerated female heads and 36 gallery walls collected from Platanus racemosa, Acer negundo, Persea americana and Ricinus communis. Fungi were identified based on micromorphology and phylogenetic analyses of the combined internal transcribed spacer region (nuc rDNA ITS1-5.8S-ITS2 [ITS barcode]), elongation factor (EF 1-α), small subunit (18S rDNA) sequences for Graphium spp., ITS, EF 1-α, calmodulin (cmdA), large subunit of the ATP citrate lyase (acl1), ß-tubulin (tub2), RNA polymerase II second largest subunit (rpb2) and large subunit (28S rDNA) sequences for Paracremonium spp. Other Graphium spp. recovered from PSHB in Vietnam, Euwallacea fornicatus in Thailand, E. validus in Pennsylvania and Paracremonium sp. recovered from PSHB in Vietnam were identified. F. euwallaceae was recovered from mycangia at higher frequencies and abundances in all hosts except R. communis, in which those of F. euwallaceae and P. pembeum were equal. P. pembeum was relatively more abundant within gallery walls of A. negundo and R. communis. In all hosts combined F. euwallaceae was relatively more abundant within PSHB heads than gallery walls. All three fungi grew at different rates and colonized inoculated excised stems of P. americana and A. negundo. P. pembeum produced longer lesions than F. euwallaceae and G. euwallaceae on inoculated avocado shoots. Results indicate PSHB is associated with a dynamic assemblage of mycangial fungal associates that pose additional risk to native and nonnative hosts in California.


Assuntos
Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Besouros/microbiologia , Animais , Ascomicetos/genética , California , Feminino , Persea/microbiologia , Filogenia , Doenças das Plantas/microbiologia
4.
Fungal Genet Biol ; 82: 277-90, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25445310

RESUMO

The mutualism between xyleborine beetles in the genus Euwallacea (Coleoptera: Curculionidae: Scolytinae) and members of the Ambrosia Fusarium Clade (AFC) represents one of 11 known evolutionary origins of fungiculture by ambrosia beetles. Female Euwallacea beetles transport fusarial symbionts in paired mandibular mycangia from their natal gallery to woody hosts where they are cultivated in galleries as a source of food. Native to Asia, several exotic Euwallacea species were introduced into the United States and Israel within the past two decades and they now threaten urban landscapes, forests and avocado production. To assess species limits and to date the evolutionary diversification of the mutualists, we reconstructed the evolutionary histories of key representatives of the Fusarium and Euwallacea clades using maximum parsimony and maximum likelihood methods. Twelve species-level lineages, termed AF 1-12, were identified within the monophyletic AFC and seven among the Fusarium-farming Euwallacea. Bayesian diversification-time estimates placed the origin of the Euwallacea-Fusarium mutualism near the Oligocene-Miocene boundary ∼19-24 Mya. Most Euwallacea spp. appear to be associated with one species of Fusarium, but two species farmed two closely related fusaria. Euwallacea sp. #2 in Miami-Dade County, Florida cultivated Fusarium spp. AF-6 and AF-8 on avocado, and Euwallacea sp. #4 farmed Fusarium ambrosium AF-1 and Fusarium sp. AF-11 on Chinese tea in Sri Lanka. Cophylogenetic analyses indicated that the Euwallacea and Fusarium phylogenies were largely incongruent, apparently due to the beetles switching fusarial symbionts (i.e., host shifts) at least five times during the evolution of this mutualism. Three cospeciation events between Euwallacea and their AFC symbionts were detected, but randomization tests failed to reject the null hypothesis that the putative parallel cladogenesis is a stochastic pattern. Lastly, two collections of Euwallacea sp. #2 from Miami-Dade County, Florida shared an identical cytochrome oxidase subunit 1 (CO1) allele with Euwallacea validus, suggesting introgressive hybridization between these species and/or pseudogenous nature of this marker. Results of the present study highlight the importance of understanding the potential for and frequency of host-switching between Euwallacea and members of the AFC, and that these shifts may bring together more aggressive and virulent combinations of these invasive mutualists.


Assuntos
Besouros/genética , Besouros/microbiologia , Fusarium/classificação , Fusarium/genética , Filogenia , Simbiose , Animais , Besouros/classificação , Evolução Molecular , Feminino , Genes Fúngicos , Genes de Insetos , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA