Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 12: 1328089, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444441

RESUMO

Background: Ultraviolet B (UVB) from sunlight represents a major environmental factor that causes toxic effects resulting in structural and functional cutaneous abnormalities in most living organisms. Although numerous studies have indicated the biological mechanisms linking UVB exposure and cutaneous manifestations, they have typically originated from a single study performed under limited conditions. Methods: We accessed all publicly accessible expression data of various skin cell types exposed to UVB, including skin biopsies, keratinocytes, and fibroblasts. We performed biological network analysis to identify the molecular mechanisms and identify genetic biomarkers. Results: We interpreted the inflammatory response and carcinogenesis as major UVB-induced signaling alternations and identified three candidate biomarkers (IL1B, CCL2, and LIF). Moreover, we confirmed that these three biomarkers contribute to the survival probability of patients with cutaneous melanoma, the most aggressive and lethal form of skin cancer. Conclusion: Our findings will aid the understanding of UVB-induced cutaneous toxicity and the accompanying molecular mechanisms. In addition, the three candidate biomarkers that change molecular signals due to UVB exposure of skin might be related to the survival rate of patients with cutaneous melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Neoplasias Cutâneas/genética , Sequência de Bases , Biomarcadores , RNA
2.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232834

RESUMO

Particulate matter 2.5 (PM2.5), an atmospheric pollutant with an aerodynamic diameter of <2.5 µm, can cause serious human health problems, including skin damage. Since sebocytes are involved in the regulation of skin homeostasis, it is necessary to study the effects of PM2.5 on sebocytes. We examined the role of PM2.5 via the identification of differentially expressed genes, functional enrichment and canonical pathway analysis, upstream regulator analysis, and disease and biological function analysis through mRNA sequencing. Xenobiotic and lipid metabolism, inflammation, oxidative stress, and cell barrier damage-related pathways were enriched; additionally, PM2.5 altered steroid hormone biosynthesis and retinol metabolism-related pathways. Consequently, PM2.5 increased lipid synthesis, lipid peroxidation, inflammatory cytokine expression, and oxidative stress and altered the lipid composition and expression of factors that affect cell barriers. Furthermore, PM2.5 altered the activity of sterol regulatory element binding proteins, mitogen-activated protein kinases, transforming growth factor beta-SMAD, and forkhead box O3-mediated pathways. We also suggest that the alterations in retinol and estrogen metabolism by PM2.5 are related to the damage. These results were validated using the HairSkin® model. Thus, our results provide evidence of the harmful effects of PM2.5 on sebocytes as well as new targets for alleviating the skin damage it causes.


Assuntos
Poluentes Ambientais , Material Particulado , Citocinas/genética , Estrogênios , Perfilação da Expressão Gênica , Humanos , Lipídeos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Material Particulado/química , Material Particulado/toxicidade , RNA Mensageiro , Esteroides , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Fator de Crescimento Transformador beta/genética , Vitamina A , Xenobióticos
3.
Nucleic Acids Res ; 50(19): 11315-11330, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36283692

RESUMO

The pathogenic Listeria monocytogenes bacterium produces the flagellum as a locomotive organelle at or below 30°C outside the host, but it halts flagellar expression at 37°C inside the human host to evade the flagellum-induced immune response. Listeria monocytogenes GmaR is a thermosensor protein that coordinates flagellar expression by binding the master transcriptional repressor of flagellar genes (MogR) in a temperature-responsive manner. To understand the regulatory mechanism whereby GmaR exerts the antirepression activity on flagellar expression, we performed structural and mutational analyses of the GmaR-MogR system. At or below 30°C, GmaR exists as a functional monomer and forms a circularly enclosed multidomain structure via an interdomain interaction. GmaR in this conformation recognizes MogR using the C-terminal antirepressor domain in a unique dual binding mode and mediates the antirepressor function through direct competition and spatial restraint mechanisms. Surprisingly, at 37°C, GmaR rapidly forms autologous aggregates that are deficient in MogR neutralization capabilities.


Assuntos
Listeria monocytogenes , Humanos , Listeria monocytogenes/genética , Proteínas de Bactérias/metabolismo , Flagelos/genética , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
Sci Rep ; 12(1): 9750, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697899

RESUMO

Although numerous experimental studies have suggested a significant association between ambient particulate matter (PM) and respiratory damage, the etiological relationship between ambient PM and environmental skin diseases is not clearly understood. Here, we aimed to explore the association between PM and skin diseases through biological big data analysis. Differential gene expression profiles associated with PM and environmental skin diseases were retrieved from public genome databases. The co-expression among them was analyzed using a text-mining-based network analysis software. Activation/inhibition patterns from RNA-sequencing data performed with PM2.5-treated normal human epidermal keratinocytes (NHEK) were overlapped to select key regulators of the analyzed pathways. We explored the adverse effects of PM on the skin and attempted to elucidate their relationships using public genome data. We found that changes in upstream regulators and inflammatory signaling networks mediated by MMP-1, MMP-9, PLAU, S100A9, IL-6, and S100A8 were predicted as the key pathways underlying PM-induced skin diseases. Our integrative approach using a literature-based co-expression analysis and experimental validation not only improves the reliability of prediction but also provides assistance to clarify underlying mechanisms of ambient PM-induced dermal toxicity that can be applied to screen the relationship between other chemicals and adverse effects.


Assuntos
Poluentes Atmosféricos , Dermatopatias , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Humanos , Material Particulado/análise , Material Particulado/toxicidade , Reprodutibilidade dos Testes , Pele/química , Dermatopatias/induzido quimicamente , Dermatopatias/genética
5.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34681602

RESUMO

Particulate matters (PMs) increase oxidative stress and inflammatory response in different tissues. PMs disrupt the formation of primary cilia in various skin cells, including keratinocytes and melanocytes. In this study, we found that 2-isopropylmalic acid (2-IPMA) promoted primary ciliogenesis and restored the PM2.5-induced dysgenesis of primary cilia in dermal fibroblasts. Moreover, 2-IPMA inhibited the generation of excessive reactive oxygen species and the activation of stress kinase in PM2.5-treated dermal fibroblasts. Further, 2-IPMA inhibited the production of pro-inflammatory cytokines, including IL-6 and TNF-α, which were upregulated by PM2.5. However, the inhibition of primary ciliogenesis by IFT88 depletion reversed the downregulated cytokines by 2-IPMA. Moreover, we found that PM2.5 treatment increased the MMP-1 expression in dermal fibroblasts and a human 3-D-skin model. The reduced MMP-1 expression by 2-IPMA was further reversed by IFT88 depletion in PM2.5-treated dermal fibroblasts. These findings suggest that 2-IPMA ameliorates PM2.5-induced inflammation by promoting primary ciliogenesis in dermal fibroblasts.


Assuntos
Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Malatos/farmacologia , Metaloproteinase 1 da Matriz/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Cílios/metabolismo , Cílios/patologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Metaloproteinase 1 da Matriz/genética , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima/efeitos dos fármacos
6.
Molecules ; 26(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500843

RESUMO

Primary cilia mediate the interactions between cells and external stresses. Thus, dysregulation of primary cilia is implicated in various ciliopathies, e.g., degeneration of the retina caused by dysregulation of the photoreceptor primary cilium. Particulate matter (PM) can cause epithelium injury and endothelial dysfunction by increasing oxidative stress and inflammatory responses. Previously, we showed that PM disrupts the formation of primary cilia in retinal pigment epithelium (RPE) cells. In the present study, we identified 2-isopropylmalic acid (2-IPMA) as a novel inducer of primary ciliogenesis from a metabolite library screening. Both ciliated cells and primary cilium length were increased in 2-IPMA-treated RPE cells. Notably, 2-IPMA strongly promoted primary ciliogenesis and restored PM2.5-induced dysgenesis of primary cilia in RPE cells. Both excessive reactive oxygen species (ROS) generation and activation of a stress kinase, JNK, by PM2.5 were reduced by 2-IPMA. Moreover, 2-IPMA inhibited proinflammatory cytokine production, i.e., IL-6 and TNF-α, induced by PM2.5 in RPE cells. Taken together, our data suggest that 2-IPMA ameliorates PM2.5-induced inflammation by promoting primary ciliogenesis in RPE cells.


Assuntos
Inflamação/metabolismo , Material Particulado/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Cílios/metabolismo , Cílios/ultraestrutura , Citocinas/metabolismo , Ativação Enzimática , Técnicas de Silenciamento de Genes , Humanos , MAP Quinase Quinase 4/metabolismo , Malatos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Retina
7.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069002

RESUMO

Precise measurement of particulate matter (PM) on skin is important for managing and preventing PM-related skin diseases. This study aims to directly visualize the deposition and penetration of PM into human skin using a multimodal nonlinear optical (MNLO) imaging system. We successfully obtained PM particle signals by merging two different sources, C-C vibrational frequency and autofluorescence, while simultaneously visualizing the anatomical features of the skin via keratin, collagen, and elastin. As a result, we found morphologically dependent PM deposition, as well as increased deposition following disruption of the skin barrier via tape-stripping. Furthermore, PM penetrated more and deeper into the skin with an increase in the number of tape-strippings, causing a significant increase in the secretion of pro-inflammatory cytokines. Our results suggest that MNLO imaging could be a useful technique for visualizing and quantifying the spatial distribution of PM in ex vivo human skin tissues.


Assuntos
Imagem Multimodal/métodos , Imagem Óptica/métodos , Material Particulado/análise , Dermatopatias/diagnóstico , Pele/metabolismo , Humanos , Dermatopatias/metabolismo
8.
Biochem Biophys Res Commun ; 519(1): 35-40, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31481231

RESUMO

Metallo-ß-lactamase (MBL) fold proteins play critical roles in diverse biological processes, such as DNA repair, RNA processing, detoxification, and metabolism. Although MBL fold proteins share a metal-bound αßßα structure, they are highly heterogeneous in metal type, metal coordination, and oligomerization and exhibit different catalytic functions. Bacillus subtilis contains the yhfI gene, which is predicted to encode an MBL fold protein. To reveal the structural and functional features of YhfI, we determined two crystal structures of YhfI and biochemically characterized the catalytic activity of YhfI. YhfI forms an α-helix-decorated ß-sandwich structure and assembles into a dimer using highly conserved residues. Each YhfI chain simultaneously interacts with two metal ions, which are coordinated by histidine and aspartate residues that are strictly conserved in YhfI orthologs. A comparative analysis of YhfI and its homologous structures suggests that YhfI would function as a phosphodiesterase. Indeed, YhfI drove the phosphodiesterase reaction and showed high catalytic activity at pH 8.0-9.5 in the presence of manganese. Moreover, we propose that the active site of YhfI is located at a metal-containing pocket generated between the two subunits of a YhfI dimer.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Metais/metabolismo , beta-Lactamases/química , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Diester Fosfórico Hidrolases/química , Multimerização Proteica , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
9.
Sci Rep ; 9(1): 3994, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850686

RESUMO

Exposure to fine particulate matter (PM) with diameter <2.5 µm (PM2.5) causes epithelium injury and endothelial dysfunction. Primary cilia are sensory organelles that transmit extracellular signals into intracellular biochemical responses and have roles in physiology. To date, there have been no studies investigating whether PM2.5 affects primary cilia in skin. We addressed this in the present study using normal human epidermal keratinocytes (NHEKs) and retinal pigment epithelium (RPE) cells. We found that formation of primary cilium is increased in differentiated NHEKs. However, treatment with PM2.5 blocked increased ciliogenesis in NHEKs and RPE cells. Furthermore, PM2.5 transcriptionally upregulated small proline rich protein 3 (SPRR3) expression by activating c-Jun, and ectopic expression of SPRR3 inhibits suppressed the ciliogenesis. Accordingly, treatment with c-Jun activator (anisomycin) induced SPRR3 expression, whereas the inhibitor (SP600125) recovered the ciliated cells and cilium length in PM2.5-treated cells. Moreover, c-Jun inhibitor suppressed upregulation of SPRR3 in PM2.5-treated cells. Taken together, our finding suggested that PM2.5 inhibits ciliogenesis by increasing SPRR3 expression via c-Jun activation in RPE cells and keratinocytes.


Assuntos
Cílios/efeitos dos fármacos , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Queratinócitos/efeitos dos fármacos , Material Particulado/farmacologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Pele/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Cílios/metabolismo , Humanos , Queratinócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Pele/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
FEBS J ; 285(20): 3786-3800, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30095229

RESUMO

VanR is a negative transcriptional regulator of bacteria that belongs to the PadR family and modulates the expression of vanillate transport and degradation proteins in response to vanillate. Although VanR plays a key role in the utilization of vanillate as a carbon source, it is barely understood how VanR recognizes its effector. Thus, our knowledge concerning the gene regulatory mechanism of VanR is limited. Here, we reveal the vanillate-binding mode of VanR through structural, biophysical, and mutational studies. Similar to other PadR family members, VanR forms a functional dimer, and each VanR subunit consists of an N-terminal DNA-binding domain (NTD) and a C-terminal dimerization domain (CTD). One VanR dimer simultaneously binds two vanillate molecules using two interdomain cavities, as observed in PadR. In contrast to these common features, VanR contains an additional α-helix, αi, that has not been found in other PadR family members. The αi helix functions as an interdomain crosslinker that mediates interactions between the NTD and the CTD. In addition, the VanR-specific αi helix plays a key role in the formation of a unique effector-binding site. As a result, the effector-binding mode of VanR is distinguishable from that of PadR in the location and accessibility of the effector-binding site as well as the orientation of its bound effector. Furthermore, we propose the DNA-binding mode and vanillate-mediated transcriptional regulation mechanism of VanR based on comparative structural and mutational analyses. DATABASES: The atomic coordinates and the structure factors for VanR (PDB ID 5Z7B) have been deposited in the Protein Data Bank, www.pdb.org.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Benzaldeídos/metabolismo , Corynebacterium glutamicum/metabolismo , DNA Bacteriano/metabolismo , Conformação Proteica em alfa-Hélice , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , DNA Bacteriano/química , DNA Bacteriano/genética , Modelos Moleculares , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Homologia de Sequência , Fatores de Transcrição/genética
11.
Toxicol Lett ; 273: 26-35, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28341207

RESUMO

Ambient air pollution is becoming more severe worldwide, posing a serious threat to human health. Fine airborne particles of particulate matter (PM2.5) show higher cytotoxicity than other coarse fractions. Indeed, PM2.5 induces cardiovascular or respiratory damage; however, few studies have evaluated the detrimental effect of PM2.5 to normal human skin. We used a next-generation sequencing-based (RNA-Seq) method with transcriptome and Gene Ontology (GO) enrichment analysis to determine the harmful influences of PM2.5 on human normal epidermal keratinocytes. DAVID analysis showed that the most significantly enriched GO terms were associated with epidermis-related biological processes such as "epidermis development (GO: 0008544)" and "keratinocyte differentiation (GO: 0030216)", suggesting that PM2.5 has some deleterious effects to the human epidermis. In addition, Ingenuity Pathway Analysis predicted inflammation-related signaling as one of the major PM2.5-induced signaling pathways, and pro-inflammatory cytokines as upstream regulators with symptoms similar to psoriasis as downstream effects. PM2.5 caused considerable changes in the expression of pro-inflammatory cytokines and psoriatic skin disease-related genes, might lead to epidermal dysfunctions. Our results might help to understand the mechanism of air pollution-induced skin barrier perturbation and contribute to the development of a new strategy for the prevention or recovery of the consequent damage.


Assuntos
Poluentes Atmosféricos/toxicidade , Queratinócitos/efeitos dos fármacos , Material Particulado/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Atmosféricos/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Epiderme/efeitos dos fármacos , Epiderme/imunologia , Epiderme/patologia , Perfilação da Expressão Gênica , Humanos , Queratinócitos/imunologia , Queratinócitos/metabolismo , Tamanho da Partícula , Material Particulado/química , Psoríase/genética , Psoríase/imunologia , Psoríase/patologia
12.
Biochim Biophys Acta ; 1853(10 Pt A): 2251-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25986862

RESUMO

Protein tyrosine kinase 7 (PTK7) is a member of the defective receptor protein tyrosine kinase family which lacks catalytic activity. Expression of PTK7 is increased in various cancers but its role in carcinogenesis is not well understood. We previously showed that disruption of PTK7 function suppresses VEGF-induced angiogenic phenotypes in HUVECs and mice. Here, we investigated molecular mechanisms for modulating VEGF-induced physiological effects by PTK7. Treatment with a high concentration of extracellular domain of PTK7 (soluble PTK7; sPTK7) or knockdown of PTK7 inhibited VEGF-induced phosphorylation of kinase insert domain receptor (KDR) but did not inhibit phosphorylation of fms-related tyrosine kinase 1 (FLT-1) in HUVECs. PTK7, more specifically sPTK7, interacted with KDR but not with FLT-1 in HUVECs and HEK293 cells. In vitro binding assay showed that sPTK7 formed oligomers with the extracellular domain of KDR (sKDR) up to an approximately 1:3 molar ratio, and vice versa. sPTK7 at lower molar ratios than sKDR enhanced the binding of VEGF to sKDR. At the same or higher molar ratios, it reduced the binding of VEGF to sKDR. Increasing concentrations of sPTK7 or increasing levels of PTK7 expression first increased and then decreased VEGF-induced KDR phosphorylation, migration, and capillary-like tube formation of HUVECs, as well as in vivo angiogenesis. Taken together, our data demonstrates that PTK7 regulates the activity of KDR biphasically by inducing oligomerization of KDR molecules at lower concentrations and by surrounding KDR molecules at higher concentrations.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica/fisiologia , Multimerização Proteica/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Moléculas de Adesão Celular/genética , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Camundongos , Fosforilação/fisiologia , Receptores Proteína Tirosina Quinases/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
13.
Cancer Sci ; 104(8): 1120-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23663482

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a common subtype of esophageal cancer that is particularly prevalent in East Asian countries. Our previous expression profile analysis showed that the gene encoding protein tyrosine kinase 7 (PTK7) is upregulated in ESCC tissues. Here, we aimed to validate PTK7 as a prognostic factor and a candidate target for molecular treatment of ESCC. Both RT-PCR and Western blot analysis of tissues from ESCC patients revealed that PTK7 was significantly upregulated in tumor tissue samples of ESCC. Immunohistochemical staining of PTK7 showed that increased expression of PTK7 was inversely correlated with overall survival (P = 0.021). In vitro knockdown of PTK7 inhibited proliferation, survival, wound healing, and invasion of ESCC cells. In addition, PTK7 knockdown decreased phosphorylation of Akt, Erk, and focal adhesion kinase (FAK), important determinants of cell proliferation, survival, and migration. Therefore, our findings suggest that PTK7 has potential as a prognostic marker for ESCC and might also be a candidate for targeted therapy in the treatment of ESCC.


Assuntos
Carcinoma de Células Escamosas/enzimologia , Moléculas de Adesão Celular/metabolismo , Neoplasias Esofágicas/enzimologia , Receptores Proteína Tirosina Quinases/metabolismo , Idoso , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Moléculas de Adesão Celular/genética , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Feminino , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Fosforilação , Prognóstico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/genética , Regulação para Cima
14.
J Biol Chem ; 287(30): 25001-9, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22665490

RESUMO

Protein-tyrosine kinase 7 (PTK7) is a member of the defective receptor protein-tyrosine kinases and is known to function as a regulator of planar cell polarity during development. Its expression is up-regulated in some cancers including colon carcinomas. A 100-kDa fragment of PTK7 was detected in the culture media from colon cancer cells and HEK293 cells. The shed fragment was named sPTK7-Ig1-7 because its molecular mass was very similar to that of the entire extracellular domain of PTK7 that contains immunoglobulin-like loops 1 to 7 (Ig1-7). The shedding of sPTK7-Ig1-7 was enhanced by treatment with phorbol 12-myristate 13-acetate. In addition to the sPTK7-Ig1-7 found in the culture medium, two C-terminal fragments of PTK7 were detected in the cell lysates: PTK7-CTF1, which includes a transmembrane segment and a cytoplasmic domain, and PTK7-CTF2, which lacks most of the transmembrane segment from PTK7-CTF1. Analysis of PTK7 processing in the presence of various protease inhibitors or after knockdown of potential proteases suggests that shedding of PTK7 into sPTK7-Ig1-7 and PTK7-CTF1 is catalyzed by ADAM17, and further cleavage of PTK7-CTF1 into PTK7-CTF2 is mediated by the γ-secretase complex. PTK7-CTF2 localizes to the nucleus and enhances proliferation, migration, and anchorage-independent colony formation. Our findings demonstrate a novel role for PTK7 in the tumorigenesis via generation of PTK7-CTF2 by sequential cleavage of ADAM17 and γ-secretase.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Moléculas de Adesão Celular/metabolismo , Movimento Celular , Proliferação de Células , Neoplasias do Colo/metabolismo , Proteínas de Neoplasias/metabolismo , Proteólise , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas ADAM/genética , Proteína ADAM17 , Secretases da Proteína Precursora do Amiloide/genética , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Neoplasias do Colo/genética , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Proteína Tirosina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA