Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38392028

RESUMO

Reflection-type photoplethysmography (PPG) pulse sensors used in wearable smart watches, true wireless stereo, etc., have been recently considered a key component for monitoring biological signals such as heart rate, SPO3, and blood pressure. Typically, the optical front end (OFE) of these PPG sensors is heterogeneously configured and packaged with light sources and receiver chips. In this paper, a novel quarter-annulus photodetector (NQAPD) with identical inner and outer radii of curvature has been developed using a plasma dicing process to realize a ring-type OFE receiver, which maximizes manufacturing efficiency and increases the detector collection area by 36.7% compared to the rectangular PD. The fabricated NQAPD exhibits a high quantum efficiency of over 90% in the wavelength of 500 nm to 740 nm and the highest quantum efficiency of 95% with a responsivity of 0.41 A/W at the wavelength of 530 nm. Also, the NQAPD is shown to increase the SNR of the PPG signal by 5 to 7.6 dB compared to the eight rectangular PDs. Thus, reflective PPG sensors constructed with NQAPD can be applied to various wearable devices requiring low power consumption, high performance, and cost-effectiveness.


Assuntos
Fotopletismografia , Dispositivos Eletrônicos Vestíveis , Frequência Cardíaca/fisiologia , Extremidade Superior , Pressão Sanguínea , Processamento de Sinais Assistido por Computador
2.
Micromachines (Basel) ; 14(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838148

RESUMO

Most microsensors are composed of devices and covers. Due to the complicated structure of the cover and various other requirements, it difficult to use wafer-level packaging with such microsensors. In particular, for monolithic microsensors combined with read-out ICs, the available process margins are further reduced due to the thermal and mechanical effects applied to IC wafers during the packaging process. This research proposes a low-temperature, wafer-level vacuum packaging technology based on Cu-Sn bonding and nano-multilayer getter materials for use with microbolometers. In Cu-Sn bonding, the Cu/Cu3Sn/Cu microstructure required to ensure reliability can be obtained by optimizing the bonding temperature, pressure, and time. The Zr-Ti-Ru based nanomultilayer getter coating inside the cap wafer with high step height has been improved by self-aligned shadow masking. The device pad, composed of bonded wafer, was opened by wafer grinding, and the thermoelectrical properties were evaluated at the wafer-level. The bonding strength and vacuum level were characterized by a shear test and thermoelectrical test using microbolometer test pixels. The vacuum level of the packaged samples showed very narrow distribution near 50 mTorr. This wafer-level packaging platform could be very useful for sensor development whereby high reliability and excellent mechanical/optical performance are both required. Due to its reliability and the low material cost and bonding temperature, this wafer-based packaging approach is suitable for commercial applications.

3.
Materials (Basel) ; 13(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858839

RESUMO

Highly controlled biomineralization of calcium carbonate is via non-classical mesocrystallization of amorphous precursors. In the present study, a simple in vitro assay was developed to mimic the biological process, which involved stabilized amorphous calcium carbonate and a single crystal substrate of calcite. The microcoating layer formed on the calcite substrate displayed mesocrystalline characteristics, and the layers near the substrate were strongly influenced by the epitaxy to the substrate. This behavior was preserved even when the morphology of the coating layer was modified with poly(acrylic acid), a model anionic macromolecule. Interestingly, the extent of the epitaxy increased substantially with poly(ethylene imine), which barely affected the crystal morphology. The in vitro assay in the present study will be useful in the investigations of the biomineralization and bioinspired crystallization of calcium carbonate in general.

4.
Small ; 14(44): e1802239, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30286275

RESUMO

Density-strength tradeoff appears to be an inherent limitation for most materials and therefore design of cell topology that mitigates strength decrease with density reduction has been a long-lasting engineering pursue for porous materials. Continuum-mechanics-based analyses of mechanical responses of conventional porous materials with bending-dominated structures often give the density-strength scaling law following the power-law relationship with an exponent of 1.5 or higher, which consequentially determines the upper bound of the specific strength for a material to reach. In this work, a new design criterion capable of significantly abating strength degradation in lightweight materials is presented, by successfully combining the size-induced strengthening effect in nanomaterials with the architectural design of cellular porous materials. Hollow-tube-based 3D ceramic nanoarchitectures satisfying such criterion are fabricated in large area using proximity field nano-patterning and atomic layer deposition. Experimental data from micropillar compression confirm that the strengths of these nanoarchitectural materials scale with relative densities with a power-law exponent of 0.93, a hardly observable value in conventional bending-dominated porous materials. This discovery of a new density-strength scaling law in nanoarchitectured materials will contribute to creating new lightweight structural materials attaining unprecedented specific strengths overcoming the conventional limit.


Assuntos
Cerâmica/química , Nanoestruturas/química , Força Compressiva , Teste de Materiais , Porosidade , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA