Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(22): 23523-23530, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38854510

RESUMO

As the field of 2D materials rapidly evolves, substances such as graphene, metal dichalcogenides, MXenes, and MBenes have garnered extensive attention from scholars in the gas sensing domain due to their unique and superior properties. Based on first-principles calculations, this work explored the adsorption characteristics of both intrinsic and silver (Ag) doped tin disulfide (SnS2) toward the decomposition components of the insulating medium C4F7N (namely, CF4, C3F6, and COF2), encompassing the adsorption energy, charge transfer, density of state (DOS), band structure, and adsorption stability. The results indicated that Ag-doped SnS2 exhibited an effective and stable adsorption for C3F6 and COF2, whereas its adsorption for CF4 was comparatively weaker. Additionally, the potential for Ag-SnS2 in detecting C3F6 was highlighted, inferred from the contributions of the band gap variations. This research provides theoretical guidance for the application of Ag-SnS2 as a sensing material in assessing the operational status of gas-insulated equipment.

2.
RSC Adv ; 14(16): 11323-11333, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38595724

RESUMO

Silicon-carbon composites have been recognized as some of the most promising anode candidates for advancing new-generation lithium-ion batteries (LIBs). The development of high-efficiency silicon/graphene anodes through a simple and cost-effective preparation route is significant. Herein, by using micron silicon as raw material, we designed a mesoporous composite of silicon/alumina/reduced graphene oxide (Si/Al2O3/RGO) via a two-step ball milling combined annealing process. Commercial Al2O3 nanoparticles are introduced as an interlayer due to the toughening effect, while RGO nanosheets serve as a conductive and elastic coating to protect active submicron silicon particles during lithium alloying/dealloying reactions. Owing to the rational porous structure and dual protection strategy, the core/shell structured Si/Al2O3/RGO composite is efficient for Li+ storage and demonstrates improved electrical conductivity, accelerated charge transfer and electrolyte diffusion, and especially high structural stability upon charge/discharge cycling. As a consequence, Si/Al2O3/RGO yields a high discharge capacity of 852 mA h g-1 under a current density of 500 mA g-1 even after 200 cycles, exhibiting a high capacity retention of ∼85%. Besides, Si/Al2O3/RGO achieves excellent cycling reversibility and superb high-rate capability with a stable specific capacity of 405 mA h g-1 at 3000 mA g-1. Results demonstrate that the Al2O3 interlayer is synergistic with the indispensable RGO nanosheet shells, affording more buffer space for silicon cores to alleviate the mechanical expansion and thus stabilizing active silicon species during charge/discharge cycles. This work provides an alternative low-cost approach to achieving high-capacity silicon/carbon composites for high-performance LIBs.

3.
Metab Brain Dis ; 37(7): 2277-2290, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35751788

RESUMO

Long non-coding RNAs (lncRNAs) have been confirmed to be involved in epilepsy development. It has been reported that lncRNA ZFAS1 plays a vital regulatory role in epilepsy progression. Therefore, the role and molecular mechanism of ZFAS1 in epilepsy progression deserve further investigation. Mice status epilepticus (SE) model was constructed, and hippocampal neurons were isolated from mice hippocampus tissues. The expression of ZFAS1, miR-15a-5p and oxidative stress responsive 1 (OXSR1) were determined by quantitative real-time PCR. ELISA assay was used to detect the concentrations of inflammation factors. Cell viability and apoptosis were examined by MTT assay, EdU staining and flow cytometry. Western blot analysis was conducted to measure protein levels, and the productions of SOD and MDA were measured to assess cell oxidative stress. Dual-luciferase reporter assay and RIP assay were employed to validate the relationship between miR-15a-5p and ZFAS1 or OXSR1. LncRNA ZFAS1 was highly expressed in SE mice and SE-stimulated hippocampal neurons. Silenced ZFAS1 promoted viability, while inhibited inflammation, apoptosis and oxidative stress in SE-induced hippocampal neurons. MiR-15a-5p could be targeted by ZFAS1, and its inhibitor also reversed the suppressive effect of ZFAS1 knockdown on SE-induced hippocampal neurons injury. In addition, OXSR1 was a target of miR-15a-5p, and its silencing also could relieve SE-induced hippocampal neurons injury. OXSR1 overexpression reversed the inhibition effect of miR-15a-5p on SE-induced hippocampal neurons injury. Moreover, ZFAS1 positively regulated OXSR1 expression by sponging miR-15a-5p, thereby activating the NF-κB pathway. LncRNA ZFAS1 might contribute to the progression of epilepsy by regulating the miR-15a-5p/OXSR1/NF-κB pathway.


Assuntos
Epilepsia , MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/metabolismo , NF-kappa B/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Apoptose/genética , Neurônios/metabolismo , Hipocampo/metabolismo , Epilepsia/genética , Inflamação , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA