Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317120

RESUMO

The main objectives of this study were to evaluate the chemical constitution and allergenic potential of red propolis extract (RPE). They were evaluated, using high performance liquid chromatography (HPLC) and the release of ß-hexosaminidase, respectively. A plethora of biologically active polyphenols and the absence of allergic responses were evinced. RPE inhibited the release of ß-hexosaminidase, suggesting that the extract does not stimulate allergic responses. Additionally, the physicochemical properties and antibacterial activity of hydrogel membranes loaded with RPE were analyzed. Bio-polymeric hydrogel membranes (M) were obtained using 5% carboxymethylcellulose (M1 and M2), 1.0% of citric acid (M3) and 10% RPE (for all). Their characterization was performed using thermal analysis, Fourier transform infrared (FTIR), total phenolic content, phenol release test and, antioxidant activity through 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and Ferric Reducing Antioxidant Power (FRAP). The latter appointed to the similar antioxidant capacity of the M1, M2 and M3. The degradation profiles showed higher thermostability to M3, followed by M2 and M1. The incorporation of RPE into the matrices and the crosslinking of M3 were evinced by FTIR. There were differences in the release of phenolic compounds, with a higher release related to M1 and lower in the strongly crosslinked M3. The degradation profiles showed higher thermostability to M3, followed by M2 and M1. The antibacterial activity of the membranes was determined using the disc diffusion assay, in comparison with controls, obtained in the same way, without RPE. The membranes elicited antibacterial activity against Staphylococcus aureus and Staphylococcus epidermidis, with superior performance over M3. The hydrogel membranes loaded with RPE promote a physical barrier against bacterial skin infections and may be applied in the wound healing process.


Assuntos
Própole/química , Administração Tópica , Alérgenos/química , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/química , Antioxidantes/farmacologia , Bandagens , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Biopolímeros/administração & dosagem , Biopolímeros/química , Biopolímeros/farmacologia , Brasil , Linhagem Celular , Fenômenos Químicos , Cromatografia Líquida de Alta Pressão , Composição de Medicamentos , Estabilidade de Medicamentos , Humanos , Hidrogéis , Técnicas In Vitro , Mastócitos/efeitos dos fármacos , Mastócitos/enzimologia , Mastócitos/imunologia , Membranas Artificiais , Fenóis/química , Própole/administração & dosagem , Própole/farmacologia , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Termogravimetria , beta-N-Acetil-Hexosaminidases/metabolismo
2.
Mol Immunol ; 85: 238-247, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28327442

RESUMO

Bothrops envenomations can promote severe inflammatory responses by inducing edema, pain, leukocyte recruitment and release of chemical mediators by local cells. In the present study, two toxins from Bothrops atrox venom (the P-I metalloprotease Batroxase and the acidic phospholipase A2 BatroxPLA2) were evaluated in relation to their inflammatory effects induced in vivo and in vitro, mainly focusing on the participation of different immune cells and inflammatory mediators. Both toxins mainly promoted acute inflammatory responses with significant recruitment of neutrophils in the early hours (1-4h) after administration into the peritoneal cavity of C57BL/6 mice, and increased infiltration of mononuclear cells especially after 24h. Among the mediators induced by both toxins are IL-6, IL-10 and PGE2, with Batroxase also inducing the release of L-1ß, and BatroxPLA2 of LTB4 and CysLTs. These responses pointed to possible involvement of immune cells such as macrophages and mast cells, which were then evaluated in vitro. Mice peritoneal macrophages stimulated with Batroxase produced significant levels of IL-6, IL-1ß, PGE2 and LTB4, whereas stimulus with BatroxPLA2 induced increases of IL-6, PGE2 and LTB4. Furthermore, both toxins were able to stimulate degranulation of RBL-2H3 mast cells, but with distinct concentration-dependent effects. Altogether, these results indicated that Batroxase and BatroxPLA2 promoted local and acute inflammatory responses related to macrophages and mast cells and to the production of several mediators. Our findings should contribute for better understanding the different mechanisms of toxicity induced by P-I metalloproteases and phospholipases A2 after snakebite envenomations.


Assuntos
Venenos de Crotalídeos/toxicidade , Mediadores da Inflamação/imunologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Leucócitos/efeitos dos fármacos , Animais , Bothrops , Modelos Animais de Doenças , Leucócitos/imunologia , Masculino , Metaloproteases/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipases A2/toxicidade
3.
Biochim Biophys Acta ; 1808(1): 55-64, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20713019

RESUMO

Primaquine (PQ) is a potent therapeutic agent used in the treatment of malaria and its mechanism of action still lacks a more detailed understanding at a molecular level. In this context, we used differential scanning calorimetry (DSC), pressure perturbation calorimetry (PPC), and electron spin resonance (ESR) to investigate the effects of PQ on the lipid phase transition, acyl chain dynamics, and on volumetric properties of lipid model membranes. DSC thermograms revealed that PQ stabilizes the fluid phase of the lipid model membranes and interacts mainly with the lipid headgroups. This result was revealed by the great effect on the pretransition of phosphatidylcholines and the destabilization of the inverted hexagonal phase of a phosphatidylethanolamine bilayer. Spin probes located at different positions along the lipid chain were used to monitor different membrane regions. ESR results indicated that PQ is effective in changing the acyl chain ordering and dynamics of the whole chain of dimyristoylphosphatidylcholine (DMPC) phospholipid in the rippled gel phase. The combined ESR and PPC results revealed that the slight DMPC volume changes at the main phase transition induced by the presence of PQ is probably due to a less dense lipid gel phase. At physiological pH, the cationic amphiphilic PQ strongly interacts with the lipid headgroup region of the bilayers, causing considerable disorganization in the hydrophobic core. These results shed light on the molecular mechanism of primaquine-lipid interaction, which may be useful in the understanding of the complex mechanism of action and/or the adverse effects of this antimalarial drug.


Assuntos
Antimaláricos/farmacologia , Bicamadas Lipídicas/química , Lipídeos/química , Membranas Artificiais , Primaquina/farmacologia , Calorimetria/métodos , Varredura Diferencial de Calorimetria/métodos , Cátions , Dimiristoilfosfatidilcolina/química , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Fosfolipídeos/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA