Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 284(22): 14809-18, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19332540

RESUMO

Visceral adiposity in obesity causes excessive free fatty acid (FFA) flux into the liver via the portal vein and may cause fatty liver disease and hepatic insulin resistance. However, because animal models of insulin resistance induced by lipid infusion or a high fat diet are complex and may be accompanied by alterations not restricted to the liver, it is difficult to determine the contribution of FFAs to hepatic insulin resistance. Therefore, we treated H4IIEC3 cells, a rat hepatocyte cell line, with a monounsaturated fatty acid (oleate) and a saturated fatty acid (palmitate) to investigate the direct and initial effects of FFAs on hepatocytes. We show that palmitate, but not oleate, inhibited insulin-stimulated tyrosine phosphorylation of insulin receptor substrate 2 and serine phosphorylation of Akt, through c-Jun NH(2)-terminal kinase (JNK) activation. Among the well established stimuli for JNK activation, reactive oxygen species (ROS) played a causal role in palmitate-induced JNK activation. In addition, etomoxir, an inhibitor of carnitine palmitoyltransferase-1, which is the rate-limiting enzyme in mitochondrial fatty acid beta-oxidation, as well as inhibitors of the mitochondrial respiratory chain complex (thenoyltrifluoroacetone and carbonyl cyanide m-chlorophenylhydrazone) decreased palmitate-induced ROS production. Together, our findings in hepatocytes indicate that palmitate inhibited insulin signal transduction through JNK activation and that accelerated beta-oxidation of palmitate caused excess electron flux in the mitochondrial respiratory chain, resulting in increased ROS generation. Thus, mitochondria-derived ROS induced by palmitate may be major contributors to JNK activation and cellular insulin resistance.


Assuntos
Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Resistência à Insulina , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Palmitatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Transporte de Elétrons/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Ativação Enzimática/efeitos dos fármacos , Ácidos Graxos/metabolismo , Hepatócitos/enzimologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mitocôndrias/enzimologia , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Ratos , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
2.
Hepatology ; 48(1): 109-18, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18571789

RESUMO

UNLABELLED: Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease and is one of the most common liver diseases in the developed world. The histological findings of NASH are characterized by hepatic steatosis, inflammation, and fibrosis. However, an optimal treatment for NASH has not been established. Tranilast, N-(3',4'-dimethoxycinnamoyl)-anthranilic acid, is an antifibrogenic agent that inhibits the action of transforming growth factor beta (TGF-beta). This drug is used clinically for fibrogenesis-associated skin disorders including hypertrophic scars and scleroderma. TGF-beta plays a central role in the development of hepatic fibrosis, and tranilast may thus ameliorate the pathogenesis of NASH. We investigated the effects of tranilast using an established dietary animal model of NASH, obese diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats and nondiabetic control Long-Evans Tokushima Otsuka (LETO) rats fed a methionine-deficient and choline-deficient diet. Treatment with 2% tranilast (420 mg/kg/day) for 8 weeks prevented the development of hepatic fibrosis and the activation of stellate cells, and down-regulated the expression of genes for TGF-beta and TGF-beta-target molecules, including alpha1 procollagen and plasminogen activator-1. In addition, tranilast attenuated hepatic inflammation and Kupffer cell recruitment, and down-regulated the expression of tumor necrosis factor alpha. Unexpectedly, tranilast ameliorated hepatic steatosis and up-regulated the expression of genes involved in beta-oxidation, such as peroxisome proliferator-activated receptor alpha and carnitine O-palmitoyltransferase-1. Most of these effects were observed in LETO rats and OLETF rats, which suggest that the action of tranilast is mediated through the insulin resistance-independent pathway. CONCLUSION: Our findings suggest that targeting TGF-beta with tranilast represents a new mode of therapy for NASH.


Assuntos
Dieta , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Cirrose Hepática/prevenção & controle , ortoaminobenzoatos/farmacologia , Animais , Carnitina O-Palmitoiltransferase/genética , Linhagem Celular , Deficiência de Colina , Ácidos Graxos/metabolismo , Fígado Gorduroso/complicações , Fígado Gorduroso/metabolismo , Interleucina-6/antagonistas & inibidores , Interleucina-6/biossíntese , Células de Kupffer/patologia , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/etiologia , Macrófagos/metabolismo , Masculino , Metionina/deficiência , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos OLETF , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/biossíntese , Regulação para Cima
3.
Eur J Pharmacol ; 588(2-3): 316-24, 2008 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-18501344

RESUMO

Insulin resistance is a major pathological condition associated with obesity and metabolic syndrome. Insulin resistance and the renin-angiotensin system are intimately linked. We evaluated the role of the renin-angiotensin system in the pathogenesis of insulin resistance-associated, non-alcoholic steatohepatitis by using the angiotensin II type 1 receptor blocker olmesartan medoxomil in a diabetic rat model. The effects of olmesartan on methionine- and choline-deficient (MCD) diet-induced steatohepatitis were investigated in obese, diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats and control Long-Evans Tokushima Otsuka (LETO) rats. Components of the renin-angiotensin system were up-regulated in the livers of OLETF rats, compared with LETO rats. In OLETF, but not LETO, rats, oral administration of olmesartan for 8 weeks ameliorated insulin resistance. Moreover, olmesartan suppressed MCD diet-induced hepatic steatosis and the hepatic expression of lipogenic genes (sterol regulatory element-binding protein-1c and fatty acid synthase) in OLETF, but not LETO, rats. In both OLETF and LETO rats, olmesartan inhibited hepatic oxidative stress (4-hydroxy-2-nonenal-modified protein) and expression of NADPH oxidase. Olmesartan also inhibited hepatic fibrosis, stellate cell activation, and expression of fibrogenic genes (transforming growth factor-beta, alpha 1 [I] procollagen, plasminogen activator inhibitor-1) in both OLETF and LETO rats. In conclusion, pharmacological blockade of the angiotensin II type 1 receptor slows the development of steatohepatitis in the OLETF rat model. This angiotensin II type 1 receptor blocker may exert insulin resistance-associated effects against hepatic steatosis and inflammation as well as direct effects against the generation of reactive oxygen species and fibrogenesis.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Fígado Gorduroso/tratamento farmacológico , Imidazóis/uso terapêutico , Tetrazóis/uso terapêutico , Animais , Deficiência de Colina/complicações , Modelos Animais de Doenças , Ácidos Graxos/biossíntese , Imidazóis/farmacologia , Resistência à Insulina , Cirrose Hepática Experimental/prevenção & controle , Masculino , Metionina/deficiência , Estresse Oxidativo , RNA Mensageiro/análise , Ratos , Ratos Long-Evans , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Tetrazóis/farmacologia , Fator de Crescimento Transformador beta/genética , Fator de Necrose Tumoral alfa/sangue
4.
Metabolism ; 56(11): 1478-85, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17950097

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is closely associated with obesity. An adipocyte-derived hormone, adiponectin, may play a role in the pathophysiology of NAFLD through insulin-sensitizing and antifibrotic effects. We found that hepatic expression of adiponectin receptor AdipoR2, but not AdipoR1, was down-regulated in 14 patients with NAFLD compared with 7 patients with a normal liver (P < .05). To investigate the significance of the adiponectin system in obesity and NAFLD, we examined the regulation of AdipoR2 expression in a nonmalignant human hepatocyte cell line, the THLE-5b cells. Insulin down-regulated the levels of AdipoR2 messenger RNA (mRNA) and protein, whereas an adipocytokine, tumor necrosis factor alpha, up-regulated them. A thiazolidinedione, pioglitazone, up-regulated the expression of AdipoR2 mRNA and protein in THLE-5b cells. The AdipoR2 mRNA level was decreased in fatty THLE-5b cells induced by coincubating with fatty acids. These findings suggest that down-regulation of AdipoR2 in the liver caused by hyperinsulinemia and steatosis may play a role in the development of NAFLD.


Assuntos
Hepatócitos/metabolismo , Fígado/metabolismo , Receptores de Adiponectina/metabolismo , Western Blotting , Linhagem Celular , Humanos , Insulina/farmacologia , Pioglitazona , Reação em Cadeia da Polimerase , Tiazolidinedionas/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA