Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 64: 101564, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35944896

RESUMO

OBJECTIVE: Fibroblast growth factor 21 (FGF21) is a peripherally-derived endocrine hormone that acts on the central nervous system (CNS) to regulate whole body energy homeostasis. Pharmacological administration of FGF21 promotes weight loss in obese animal models and human subjects with obesity. However, the central targets mediating these effects are incompletely defined. METHODS: To explore the mechanism for FGF21's effects to lower body weight, we pharmacologically administer FGF21 to genetic animal models lacking the obligate FGF21 co-receptor, ß-klotho (KLB), in either glutamatergic (Vglut2-Cre) or GABAergic (Vgat-Cre) neurons. In addition, we abolish FGF21 signaling to leptin receptor (LepR-Cre) positive cells. Finally, we examine the synergistic effects of FGF21 and leptin to lower body weight and explore the importance of physiological leptin levels in FGF21-mediated regulation of body weight. RESULTS: Here we show that FGF21 signaling to glutamatergic neurons is required for FGF21 to modulate energy expenditure and promote weight loss. In addition, we demonstrate that FGF21 signals to leptin receptor-expressing cells to regulate body weight, and that central leptin signaling is required for FGF21 to fully stimulate body weight loss during obesity. Interestingly, co-administration of FGF21 and leptin synergistically leads to robust weight loss. CONCLUSIONS: These data reveal an important endocrine crosstalk between liver- and adipose-derived signals which integrate in the CNS to modulate energy homeostasis and body weight regulation.


Assuntos
Fatores de Crescimento de Fibroblastos , Leptina , Receptores para Leptina , Animais , Peso Corporal , Fatores de Crescimento de Fibroblastos/farmacologia , Humanos , Leptina/metabolismo , Leptina/farmacologia , Neurônios/metabolismo , Obesidade/metabolismo , Receptores para Leptina/genética , Redução de Peso
2.
Mol Metab ; 55: 101405, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844020

RESUMO

OBJECTIVE: Uncoupling protein 1 (UCP1) is a mitochondrial protein critical for adaptive thermogenesis in adipose tissues, and it is typically believed to be restricted to thermogenic adipose tissues. UCP1-Cre transgenic mice are utilized in numerous studies to provide "brown adipose-specific" conditional gene targeting. Here, we examined the distribution of Cre and UCP1 throughout the body in UCP1-Cre reporter mice. METHODS: UCP1-Cre mice crossed to Ai14-tdTomato and Ai9-tdTomato reporter mice were used to explore the tissue distribution of Cre recombinase and Ucp1 mRNA in various tissues. UCP1-Cre mice were independently infected with either a Cre-dependent PHP.eB-tdTomato virus or a Cre-dependent AAV-tdTomato virus to determine whether and where UCP1 is actively expressed in the adult central nervous system. In situ analysis of the deposited single cell RNA sequencing data was used to evaluate Ucp1 expression in the hypothalamus. RESULTS: As expected, Ucp1 expression was detected in both brown and inguinal adipose tissues. Ucp1 expression was also detected in the kidney, adrenal glands, thymus, and hypothalamus. Consistent with detectable Ucp1 expression, tdTomato expression was also observed in brown adipose tissue, inguinal white adipose tissue, kidney, adrenal glands, and hypothalamus of both male and female UCP1-Cre; Ai14-tdTomato and UCP1-Cre; Ai9-tdTomato mice by fluorescent imaging and qPCR. Critically, expression of tdTomato, and thus UCP1, within the central nervous system was observed in regions of the brain critical for the regulation of energy homeostasis, including the ventromedial hypothalamus (VMH). CONCLUSIONS: TdTomato expression in UCP1-Cre; tdTomato mice is not restricted to thermogenic adipose tissues. TdTomato was also expressed in the kidneys, adrenal glands, and throughout the brain, including brain regions and cell types that are critical for multiple aspects of central regulation of energy homeostasis. Collectively, these data have important implications for the utility of UCP1-Cre mice as genetic tools to investigate gene function specifically in brown adipose tissue.


Assuntos
Marcação de Genes/métodos , Termogênese/fisiologia , Proteína Desacopladora 1/genética , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Regulação da Temperatura Corporal/genética , Regulação da Temperatura Corporal/fisiologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiologia , Feminino , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , RNA Mensageiro/metabolismo , Proteína Desacopladora 1/metabolismo
4.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33822771

RESUMO

The protein kinases IKKε and TBK1 are activated in liver and fat in mouse models of obesity. We have previously demonstrated that treatment with the IKKε/TBK1 inhibitor amlexanox produces weight loss and relieves insulin resistance in obese animals and patients. While amlexanox treatment caused a transient reduction in food intake, long-term weight loss was attributable to increased energy expenditure via FGF21-dependent beiging of white adipose tissue (WAT). Amlexanox increased FGF21 synthesis and secretion in several tissues. Interestingly, although hepatic secretion determined circulating levels, it was dispensable for regulating energy expenditure. In contrast, adipocyte-secreted FGF21 may have acted as an autocrine factor that led to adipose tissue browning and weight loss in obese mice. Moreover, increased energy expenditure was an important determinant of improved insulin sensitivity by amlexanox. Conversely, the immediate reductions in fasting blood glucose observed with acute amlexanox treatment were mediated by the suppression of hepatic glucose production via activation of STAT3 by adipocyte-secreted IL-6. These findings demonstrate that amlexanox improved metabolic health via FGF21 action in adipocytes to increase energy expenditure via WAT beiging and that adipocyte-derived IL-6 has an endocrine role in decreasing gluconeogenesis via hepatic STAT3 activation, thereby producing a coordinated improvement in metabolic parameters.


Assuntos
Aminopiridinas/farmacologia , Glicemia/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Gluconeogênese/efeitos dos fármacos , Quinase I-kappa B/metabolismo , Fígado/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Glicemia/genética , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Fatores de Crescimento de Fibroblastos/genética , Gluconeogênese/genética , Quinase I-kappa B/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
5.
Sci Rep ; 9(1): 630, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679672

RESUMO

Fibroblast Growth Factor 21 (FGF21) elicits an array of metabolic effects. However, the physiological role of FGF21 during thermal challenges is not clear. In this study, we assessed the tissue source of FGF21 and its site of action to regulate core body temperature in response to cold. Using mice lacking FGF21 specifically in the liver (FGF21 LivKO) or adipose tissues (FGF21 AdipoKO), we performed a series of cold exposure studies to examine the tissue specific induction of FGF21 in response to cold. We also examined the physiological site of FGF21 action during cold exposure by impairing FGF21 signaling to adipose tissues or the central nervous system (CNS) using genetic ablation of the FGF21 co-receptor ß-klotho in adipose tissues (KLB AdipoKO) or pharmacological blockage of FGF21 signaling. We found that only liver-derived FGF21 enters circulation during acute cold exposure and is critical for thermoregulation. While FGF21 signaling directly to adipose tissues during cold is dispensable for thermoregulation, central FGF21 signaling is necessary for maximal sympathetic drive to brown adipose tissue to maintain thermoregulation during cold. These data demonstrate a previously unrecognized role for FGF21 in the maintenance of body temperature in response to cold.


Assuntos
Temperatura Corporal/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Temperatura Baixa , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiologia
6.
JCI Insight ; 3(19)2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30282823

RESUMO

Copeptin, a marker of arginine vasopressin (AVP) secretion, is elevated throughout human pregnancies complicated by preeclampsia (PE), and AVP infusion throughout gestation is sufficient to induce the major phenotypes of PE in mice. Thus, we hypothesized a role for AVP in the pathogenesis of PE. AVP infusion into pregnant C57BL/6J mice resulted in hypertension, renal glomerular endotheliosis, intrauterine growth restriction, decreased placental growth factor (PGF), altered placental morphology, placental oxidative stress, and placental gene expression consistent with human PE. Interestingly, these changes occurred despite a lack of placental hypoxia or elevations in placental fms-like tyrosine kinase-1 (FLT1). Coinfusion of AVP receptor antagonists and time-restricted infusion of AVP uncovered a mid-gestational role for the AVPR1A receptor in the observed renal pathologies, versus mid- and late-gestational roles for the AVPR2 receptor in the blood pressure and fetal phenotypes. These findings demonstrate that AVP is sufficient to initiate phenotypes of PE in the absence of placental hypoxia, and indicate that AVP may mechanistically (independently, and possibly synergistically with hypoxia) contribute to the development of clinical signs of PE in specific subtypes of human PE. Additionally, they identify divergent and gestational time-specific signaling mechanisms that mediate the development of PE phenotypes in response to AVP.


Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos/administração & dosagem , Neurofisinas/metabolismo , Pré-Eclâmpsia/etiologia , Precursores de Proteínas/metabolismo , Vasopressinas/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Determinação da Pressão Arterial , Hipóxia Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurofisinas/administração & dosagem , Placenta/efeitos dos fármacos , Placenta/patologia , Pletismografia , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/patologia , Gravidez , Precursores de Proteínas/administração & dosagem , Receptores de Vasopressinas/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/metabolismo , Vasopressinas/administração & dosagem
7.
Mol Metab ; 6(6): 602-610, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28580290

RESUMO

OBJECTIVE: Fibroblast growth factor 21 (FGF21) is an endocrine hormone that regulates metabolic homeostasis. Previous work has suggested that impairment of FGF21 signaling in adipose tissue may occur through downregulation of the obligate FGF21 co-receptor, ß-klotho, which leads to "FGF21 resistance" during the onset of diet-induced obesity. Here, we sought to determine whether maintenance of ß-klotho expression in adipose tissue prevents FGF21 resistance and whether other mechanisms also contribute to FGF21 resistance in vivo. METHODS: We generated adipose-specific ß-klotho transgenic mice to determine whether maintenance of ß-klotho expression in adipose tissue prevents FGF21 resistance in vivo. RESULTS: ß-klotho protein levels are markedly decreased in white adipose tissue, but not liver or brown adipose tissue, during diet-induced obesity. Maintenance of ß-klotho protein expression in adipose tissue does not alleviate impaired FGF21 signaling in white adipose or increase FGF21 sensitivity in vivo. CONCLUSIONS: In white adipose tissue, downregulation of ß-klotho expression is not the major mechanism contributing to impaired FGF21 signaling in white adipose tissue.


Assuntos
Tecido Adiposo Branco/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Membrana/genética , Obesidade/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Proteínas Klotho , Proteínas de Membrana/metabolismo , Camundongos , Obesidade/etiologia , Transdução de Sinais
8.
Cell Metab ; 25(4): 935-944.e4, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28380381

RESUMO

FGF21 is an endocrine hormone that regulates energy homeostasis and insulin sensitivity. The mechanism of FGF21 action and the tissues responsible for these effects have been controversial, with both adipose tissues and the central nervous system having been identified as the target site mediating FGF21-dependent increases in insulin sensitivity, energy expenditure, and weight loss. Here we show that, while FGF21 signaling to adipose tissue is required for the acute insulin-sensitizing effects of FGF21, FGF21 signaling to adipose tissue is not required for its chronic effects to increase energy expenditure and lower body weight. Also, in contrast to previous studies, we found that adiponectin is dispensable for the metabolic effects of FGF21 in increasing insulin sensitivity and energy expenditure. Instead, FGF21 acutely enhances insulin sensitivity through actions on brown adipose tissue. Our data reveal that the acute and chronic effects of FGF21 can be dissociated through adipose-dependent and -independent mechanisms.


Assuntos
Tecido Adiposo/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Adipócitos Marrons/metabolismo , Adiponectina/metabolismo , Animais , Metabolismo Energético , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Redução de Peso
9.
Cell Rep ; 16(6): 1548-1560, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27477281

RESUMO

Activation of the brain renin-angiotensin system (RAS) stimulates energy expenditure through increasing of the resting metabolic rate (RMR), and this effect requires simultaneous suppression of the circulating and/or adipose RAS. To identify the mechanism by which the peripheral RAS opposes RMR control by the brain RAS, we examined mice with transgenic activation of the brain RAS (sRA mice). sRA mice exhibit increased RMR through increased energy flux in the inguinal adipose tissue, and this effect is attenuated by angiotensin II type 2 receptor (AT2) activation. AT2 activation in inguinal adipocytes opposes norepinephrine-induced uncoupling protein-1 (UCP1) production and aspects of cellular respiration, but not lipolysis. AT2 activation also opposes inguinal adipocyte function and differentiation responses to epidermal growth factor (EGF). These results highlight a major, multifaceted role for AT2 within inguinal adipocytes in the control of RMR. The AT2 receptor may therefore contribute to body fat distribution and adipose depot-specific effects upon cardio-metabolic health.


Assuntos
Adipócitos/metabolismo , Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Receptor Tipo 2 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/fisiologia , Tecido Adiposo Branco/metabolismo , Angiotensina II/metabolismo , Animais , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
10.
Cell Metab ; 23(2): 335-43, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26724858

RESUMO

The liver is an important integrator of nutrient metabolism, yet no liver-derived factors regulating nutrient preference or carbohydrate appetite have been identified. Here we show that the liver regulates carbohydrate intake through production of the hepatokine fibroblast growth factor 21 (FGF21), which markedly suppresses consumption of simple sugars, but not complex carbohydrates, proteins, or lipids. Genetic loss of FGF21 in mice increases sucrose consumption, whereas acute administration or overexpression of FGF21 suppresses the intake of both sugar and non-caloric sweeteners. FGF21 does not affect chorda tympani nerve responses to sweet tastants, instead reducing sweet-seeking behavior and meal size via neurons in the hypothalamus. This liver-to-brain hormonal axis likely represents a negative feedback loop as hepatic FGF21 production is elevated by sucrose ingestion. We conclude that the liver functions to regulate macronutrient-specific intake by producing an endocrine satiety signal that acts centrally to suppress the intake of "sweets."


Assuntos
Sistema Endócrino/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Preferências Alimentares/efeitos dos fármacos , Fígado/metabolismo , Sacarose/farmacologia , Paladar/efeitos dos fármacos , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Sistema Endócrino/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos Knockout , Proteínas Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo
11.
Diabetes ; 63(12): 4057-63, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25008183

RESUMO

Fibroblast growth factor (FGF)21 is an endocrine hormone that is expressed in multiple tissues and functions physiologically to maintain energy homeostasis. FGF21 is being pursued as a therapeutic target for diabetes and obesity because of its rapid and potent effects on improving insulin sensitivity. However, whether FGF21 enhances insulin sensitivity under physiologic conditions remains unclear. Here, we show that liver-derived FGF21 enters the circulation during fasting but also remains present and functional during the early stage of refeeding. After a prolonged fast, FGF21 acts as an insulin sensitizer to overcome the peripheral insulin resistance induced by fasting, thereby maximizing glucose uptake. Likewise, FGF21 is produced from the liver during overfeeding and mitigates peripheral insulin resistance. DIO FGF21 liver-specific knockout, but not FGF21 adipose-specific knockout, mice have increased insulin resistance and decreased brown adipose tissue-mediated glucose disposal. These data are compatible with the concept that FGF21 functions physiologically as an insulin sensitizer under conditions of acute refeeding and overfeeding.


Assuntos
Tecido Adiposo/metabolismo , Glicemia/metabolismo , Jejum/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Resistência à Insulina/genética , Fígado/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA