Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Water Health ; 22(5): 905-922, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38822469

RESUMO

This study addresses the heightened global reliance on point-of-use (PoU) systems driven by water quality concerns, ageing infrastructure, and urbanization. While widely used in Egypt, there is a lack of comprehensive evaluation of these systems. We assessed 10 reverse osmosis point-of-use systems, examining physicochemical, bacteriological, and protozoological aspects of tap water (inlets) and filtered water (outlets), adhering to standard methods for the examination of water and wastewater. Results showed significant reductions in total dissolved solids across most systems, with a decrease from 210 ± 23.6 mg/L in tap water to 21 ± 2.8 mg/L in filtered water for PoU-10. Ammonia nitrogen levels in tap water decreased from 0.05 ± 0.04 to 2.28 ± 1.47 mg/L to 0.02 ± 0.04 to 0.69 ± 0.64 mg/L in filtered water. Despite this, bacterial indicators showed no significant changes, with some systems even increasing coliform levels. Protozoological analysis identified prevalent Acanthamoeba (42.5%), less frequent Naegleria (2.5%), Vermamoeba vermiformis (5%), and potentially pathogenic Acanthamoeba genotypes. Elevated bacterial indicators in filtered water of point-of-use systems, combined with essential mineral removal, indicate non-compliance with water quality standards, posing a public health concern. Further research on the long-term health implications of these filtration systems is essential.


Assuntos
Água Potável , Osmose , Purificação da Água , Egito , Purificação da Água/métodos , Água Potável/microbiologia , Água Potável/parasitologia , Qualidade da Água , Microbiologia da Água , Filtração/instrumentação , Filtração/métodos , Abastecimento de Água
2.
Sci Rep ; 13(1): 15063, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699953

RESUMO

The phylum Apicomplexa comprises a large group of intracellular protozoan parasites. These microorganisms are known to infect a variety of vertebrate and invertebrate hosts, leading to significant medical and veterinary conditions such as toxoplasmosis, cryptosporidiosis, theileriosis, and eimeriosis. Despite their importance, comprehensive data on their diversity and distribution, especially in riverine environments, remain scant. To bridge this knowledge gap, we utilized next-generation high-throughput 18S rRNA amplicon sequencing powered by PacBio technology to explore the diversity and composition of the Apicomplexa taxa. Principal component analysis (PCA) and principal coordinate analysis (PCoA) indicated the habitat heterogeneity for the physicochemical parameters and the Apicomplexa community. These results were supported by PERMANOVA (P < 0.001), ANOSIM (P < 0.001), Cluster analysis, and Venn diagram. Dominant genera of Apicomplexa in inlet samples included Gregarina (38.54%), Cryptosporidium (32.29%), and Leidyana (11.90%). In contrast, outlet samples were dominated by Babesia, Cryptosporidium, and Theileria. While surface water samples revealed 16% and 8.33% relative abundance of Toxoplasma and Cryptosporidium, respectively. To our knowledge, the next-generation high throughput sequencing covered a wide range of parasites in Egypt for the first time, which could be useful for legislation of the standards for drinking water and wastewater reuse.


Assuntos
Babesia , Criptosporidiose , Cryptosporidium , Toxoplasma , Humanos , Cryptosporidium/genética , Sequenciamento de Nucleotídeos em Larga Escala , Toxoplasma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA