Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 17(4): e202301425, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-37922209

RESUMO

Electrification of the chemical industry has been considered an enabler for energy transition on a massive scale. In this context, carbon monoxide electroreduction (COR) to produce multi-carbon (C2+ ) products is considered one of the forefront emerging technologies. The key challenge in COR comes from the excessive cation crossover to the cathode via electromigration and water diffusion, which limits CO availability and impedes product selectivity. Commercial anion exchange membrane (AEM) suppresses the electromigration of cations, however, suffers from water diffusion which facilitates cation crossover. Here, we tackled these problems emerging from cation crossover and water diffusion by directly depositing an ultrathin Nafion ionomer on the cathode (sputtered Cu) surface. Our approach enables full-cell energy efficiency of 21 % for converting CO into ethylene (C2 H4 ) at 100 mA/cm2 with over 200 hours of stable operation. We also exhibited record high energy efficiency for ethanol (C2 H5 OH) production with CO-to-C2 H5 OH electrolysis efficiency of 17 %. This approach to directly depositing ultrathin ionomer on the cathode to enhance system performance may benefit other electrochemical systems to overcome challenges associated with scalability, stability, and efficiency to produce high-value chemicals.

2.
Adv Mater ; 35(24): e2300389, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36943940

RESUMO

The requirement of concentrated carbon dioxide (CO2 ) feedstock significantly limits the economic feasibility of electrochemical CO2 reduction (eCO2 R) which often involves multiple intermediate processes, including CO2 capture, energy-intensive regeneration, compression, and transportation. Herein, a bifunctional gas diffusion electrode (BGDE) for separation and eCO2 R from a low-concentration CO2 stream is reported. The BGDE is demonstrated for the selective production of ethylene (C2 H4 ) by combining high-density-polyethylene-derived porous carbon (HPC) as a physisorbent with polycrystalline copper as a conversion catalyst. The BGDE shows substantial tolerance to 10 vol% CO2 exhibiting a Faradaic efficiency of ≈45% toward C2 H4 at a current density of 80 mA cm-2 , outperforming previous reports that utilized such partial pressure (PCO2 = 0.1 atm and above) and unaltered polycrystalline copper. Molecular dynamics simulation and mixed gas permeability assessment reveal that such selective performance is ensured by high CO2 uptake of the microporous HPC as well as continuous desorption owing to the molecular diffusion and concentration gradient created by the binary flow of CO2 and nitrogen (CO2 |N2 ) within the sorbent boundary. Based on detailed techno-economic analysis, it is concluded that this in situ process can be economically compelling by precluding the C2 H4 production cost associated with the energy-intensive intermediate steps of the conventional decoupled process.

3.
Sci Adv ; 8(46): eadd3555, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36399576

RESUMO

The refining process of petroleum crude oil generates asphaltenes, which poses complicated problems during the production of cleaner fuels. Following refining, asphaltenes are typically combusted for reuse as fuel or discarded into tailing ponds and landfills, leading to economic and environmental disruption. Here, we show that low-value asphaltenes can be converted into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG), via the flash joule heating (FJH) process. After successful conversion, we develop nanocomposites by dispersing AFG into a polymer effectively, which have superior mechanical, thermal, and corrosion-resistant properties compared to the bare polymer. In addition, the life cycle and technoeconomic analysis show that the FJH process leads to reduced environmental impact compared to the traditional processing of asphaltene and lower production cost compared to other FJH precursors. Thus, our work suggests an alternative pathway to the existing asphaltene processing that directs toward a higher value stream while sequestering downstream emissions from the processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA