Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36297581

RESUMO

BACKGROUND: Diabetes is associated with several complications, including neuropathic pain, which is difficult to manage with currently available drugs. Descending noradrenergic neurons possess antinociceptive activity; however, their involvement in diabetic neuropathic pain remains to be explored. METHODS: To infer the regulatory role of this system, we examined as a function of diabetes, the expression and localization of alpha-2A adrenoceptors (α2-AR) in the dorsal root ganglia and key regions of the central nervous system, including pons and lumbar segment of the spinal cord using qRT-PCR, Western blotting, and immunofluorescence-based techniques. RESULTS: The data revealed that presynaptic synaptosomal-associated protein-25 labeled α2-AR in the central and peripheral nervous system of streptozotocin diabetic rats was upregulated both at the mRNA and protein levels. Interestingly, the levels of postsynaptic density protein-95 labeled postsynaptic neuronal α2-AR remained unaltered as a function of diabetes. These biochemical abnormalities in the noradrenergic system of diabetic animals were associated with increased pain sensitivity as typified by the presence of thermal hyperalgesia and cold/mechanical allodynia. The pain-related behaviors were assessed using Hargreaves apparatus, cold-plate and dynamic plantar aesthesiometer. Chronically administered guanfacine, a selective α2-AR agonist, to diabetic animals downregulated the upregulation of neuronal presynaptic α2-AR and ameliorated the hyperalgesia and the cold/mechanical allodynia in these animals. CONCLUSION: Together, these findings demonstrate that guanfacine may function as a potent analgesic and highlight α2-AR, a key component of the descending neuronal autoinhibitory pathway, as a potential therapeutic target in the treatment of diabetic neuropathic pain.

2.
Food Chem ; 334: 127581, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32717687

RESUMO

A novel process, 'mechanical expression preserving shape integrity', was conceived to prepare low-fat peanuts in response to health-conscious consumer demands. The main purpose of this study was to preserve the taste, aroma, and oxidative stability of the defatted product. Results generated from a central composite rotatable design showed that highest consumer sensory scores were reached at low pressures (4-6 MPa). Free fatty acid, peroxide, p-anisidine, and total oxidation values were mostly affected by water content [W] and pressure [P] with high correlation coefficients (82% < R2 < 87%). Overall, lipid oxidation and flavor fade were associated with higher defatting ratios and greater physical damage. The latter plays a major role in increasing the surface area and facilitating the access of oxygen to the remaining oil, thus rendering the defatted product more prone to oxidation. However, oxidation was reduced significantly using a Response Surface Methodology to optimize conditions ([W] 12.2 ± 0.6%d.b., [P] 6 ± 0.3 MPa and time [t] 18.2 ± 0.6 min).


Assuntos
Arachis/química , Análise de Alimentos , Odorantes , Paladar , Compostos de Anilina/análise , Ácidos Graxos não Esterificados/análise , Oxirredução , Peróxidos/análise
3.
Mol Ther Oncolytics ; 18: 573-578, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32995481

RESUMO

Malignant pleural mesothelioma (MPM) is a cancer of the pleura that lacks efficient treatment. Oncolytic immunotherapy using oncolytic vaccinia virus (VV) may represent an alternative therapeutic approach for the treatment of this malignancy. Here, we studied the oncolytic activity of VV thymidine kinase (TK)-ribonucleotide reductase (RR)-/green fluorescent protein (GFP) against MPM. This virus is a VV from the Copenhagen strain that is deleted of two genes encoding the TK (J2R) and the RR (I4L) and that express the GFP. First, we show in vitro that VVTK-RR-/GFP efficiently infects and kills the twenty-two human MPM cell lines used in this study. We also show that the virus replicates in all eight tested MPM cell lines, however, with approximately a 10-fold difference in the amplification level from one cell line to another. Then, we studied the therapeutic efficiency of VVTK-RR-/GFP in non-obese diabetic (NOD) severe combined immunodeficient (SCID) mice that bear peritoneal human MPM tumors. One intraperitoneal infection of VVTK-RR-/GFP reduces the tumor burden and significantly increases mice survival compared to untreated animals. Thus, VVTK-RR - may be a promising oncolytic virus (OV) for the oncolytic immunotherapy of MPM.

4.
Cancers (Basel) ; 12(9)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867073

RESUMO

Malignant mesothelioma (MM) still represents a devastating disease that is often detected too late, while the current effect of therapies on patient outcomes remains unsatisfactory. Invasiveness biomarkers may contribute to improving early diagnosis, prognosis, and treatment for patients, a task that could benefit from the development of high-throughput proteomics. To limit potential sources of bias when identifying such biomarkers, we conducted cross-species proteomic analyzes on three different MM sources. Data were collected firstly from two human MM cell lines, secondly from rat MM tumors of increasing invasiveness grown in immunocompetent rats and human MM tumors grown in immunodeficient mice, and thirdly from paraffin-embedded sections of patient MM tumors of the epithelioid and sarcomatoid subtypes. Our investigations identified three major invasiveness biomarkers common to the three tumor sources, CAPG, FABP4, and LAMB2, and an additional set of 25 candidate biomarkers shared by rat and patient tumors. Comparing the data to proteomic analyzes of preneoplastic and neoplastic rat mesothelial cell lines revealed the additional role of SBP1 in the carcinogenic process. These observations could provide new opportunities to identify highly vulnerable MM patients with poor survival outcomes, thereby improving the success of current and future therapeutic strategies.

5.
Cancers (Basel) ; 12(4)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290283

RESUMO

Recent findings suggest that S100A4, a protein involved in communication between stromal cells and cancer cells, could be more involved than previously expected in cancer invasiveness. To investigate its cumulative value in the multistep process of the pathogenesis of malignant mesothelioma (MM), SWATH-MS (sequential window acquisition of all theoretical fragmentation spectra), an advanced and robust technique of quantitative proteomics, was used to analyze a collection of 26 preneoplastic and neoplastic rat mesothelial cell lines and models of MM with increasing invasiveness. Secondly, proteomic and histological analyses were conducted on formalin-fixed paraffin-embedded sections of liver metastases vs. primary tumor, and spleen from tumor-bearing rats vs. controls in the most invasive MM model. We found that S100A4, along with 12 other biomarkers, differentiated neoplastic from preneoplastic mesothelial cell lines, and invasive vs. non-invasive tumor cells in vitro, and MM tumors in vivo. Additionally, S100A4 was the only protein differentiating preneoplastic mesothelial cell lines with sarcomatoid vs. epithelioid morphology in relation to EMT (epithelial-to-mesenchymal transition). Finally, S100A4 was the most significantly increased biomarker in liver metastases vs. primary tumor, and in the spleen colonized by MM cells. Overall, we showed that S100A4 was the only protein that showed increased abundance in all situations, highlighting its crucial role in all stages of MM pathogenesis.

6.
Oxid Med Cell Longev ; 2018: 6825452, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510624

RESUMO

Sarcopenia, a loss of muscle mass and functionality, constitutes a major contributor to disability in diabetes. Hydrogen sulfide (H2S) dynamics and muscle mass regulatory signaling were studied in GK rats, a model for type 2 diabetes (T2D). GK rats exhibited a number of features that are consistent with sarcopenia and T2D including loss of muscle mass and strength, in addition to glucose intolerance, insulin resistance, and impaired ß-cell responsiveness to glucose. Mechanistically, activation levels of Akt, a key modulator of protein balance, were decreased in T2D. Consequently, we confirmed reduced activity of mTOR signaling components and higher expression of atrophy-related markers typified by FoxO1/atrogin-1/MuRF1 and myostatin-Smad2/3 signaling during the course of diabetes. We observed in GK rat reduced antioxidant capacity (↓GSH/GSSG) and increased expression and activity of NADPH oxidase in connection with augmented rate of oxidation of lipids, proteins, and DNA. H2S bioavailability and the expression of key enzymes involved in its synthesis were suppressed as a function of diabetes. Interestingly, GK rats receiving NaHS displayed increased muscle Akt/mTOR signaling and decreased expression of myostatin and the FoxO1/MuRF1/atrogin-dependent pathway. Moreover, diabetes-induced heightened state of oxidative stress was also ameliorated in response to NaHS therapy. Overall, the current data support the notion that a relationship exists between sarcopenia, heightened state of oxidative stress, and H2S deficiency at least in the context of diabetes. Moreover, treatment with a potent H2S donor at an early stage of diabetes is likely to mitigate the development of sarcopenia/frailty and predictably reduces its devastating sequelae of amputation.


Assuntos
Antioxidantes/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Sarcopenia/tratamento farmacológico , Sarcopenia/metabolismo , Sulfetos/farmacologia , Animais , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Sarcopenia/etiologia , Sarcopenia/patologia , Transdução de Sinais
7.
Oncotarget ; 9(46): 28069-28082, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29963262

RESUMO

BACKGROUND: Gemcitabine is a standard treatment for pancreatic adenocarcinoma. Many mechanisms are involved in gemcitabine resistance, such as reduced expression of the human equilibrative nucleoside transporter 1 (hENT1) membrane transporter, deoxycytidine kinase deficiency, and changes in the signal transmission of mitogen-activity protein kinase (MAPK) and the phosphoinositide 3-kinase (PI3K) pathways. AIM: To evaluate the anti-tumor efficiency of blocking signaling pathways using combined action of gemcitabine, everolimus and zoledronic acid versus gemcitabine alone in a mouse subcutaneous xenograft. METHODS: Implantations of two human pancreatic adenocarcinoma cells lines (PANC1, K-ras mutated and gemcitabine-resistant; and BxPc3, wild-type K-ras and gemcitabine-sensitive) were performed on male athymic nude mice. The mice received different treatments: gemcitabine, gemcitabine plus everolimus, everolimus, gemcitabine plus zoledronic acid, everolimus plus zoledronic acid, or gemcitabine plus everolimus and zoledronic acid, for 28 days. We measured the tumor volume and researched the expression of the biomarkers involved in the signaling pathways or in gemcitabine resistance. RESULTS: In wild-type K-ras tumors, the combinations of gemcitabine plus everolimus; zoledronic acid plus everolimus; and gemcitabine plus zoledronic acid and everolimus slowed tumor growth, probably due to caspase-3 overexpression and reduced Annexin II expression. In mutated K-ras tumors, gemcitabine plus everolimus and zoledronic acid, and the combination of zoledronic acid and everolimus, decreased tumor volume as compared to gemcitabine alone, inhibiting the ERK feedback loop induced by everolimus. CONCLUSION: The combination of zoledronic acid and everolimus has an antitumor effect and could increase gemcitabine efficacy.

8.
Oncotarget ; 9(23): 16311-16329, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29662647

RESUMO

Sarcomatoid mesothelioma (SM) is a devastating cancer associated with one of the poorest outcome. Therefore, representative preclinical models reproducing different tumor microenvironments (TME) observed in patients would open up new prospects for the identification of markers and evaluation of innovative therapies. Histological analyses of four original models of rat SM revealed their increasing infiltrative and metastatic potential were associated with differences in Ki67 index, blood-vessel density, and T-lymphocyte and macrophage infiltration. In comparison with the noninvasive tumor M5-T2, proteomic analysis demonstrated the three invasive tumors F4-T2, F5-T1 and M5-T1 shared in common a very significant increase in the abundance of the multifunctional proteins galectin-3, prohibitin and annexin A5, and a decrease in proteins involved in cell adhesion, tumor suppression, or epithelial differentiation. The increased metastatic potential of the F5-T1 tumor, relative to F4-T2, was associated with an increased macrophage vs T-cell infiltrate, changes in the levels of expression of a panel of cytokine genes, an increased content of proteins involved in chromatin organization, ribosome structure, splicing, or presenting anti-adhesive properties, and a decreased content of proteins involved in protection against oxidative stress, normoxia and intracellular trafficking. The most invasive tumor, M5-T1, was characterized by a pattern of specific phenotypic and molecular features affecting the presentation of MHC class I-mediated antigens and immune cell infiltration, or involved in the reorganization of the cytoskeleton and composition of the extracellular matrix. These four preclinical models and data represent a new resource available to the cancer research community to catalyze further investigations on invasiveness.

9.
Oncotarget ; 8(34): 57552-57573, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28915695

RESUMO

A rat model of sarcomatoid mesothelioma, mimicking some of the worst clinical conditions encountered, was established to evaluate the therapeutic potential of intracavitary curcumin administration. The M5-T1 cell line, selected from a collection established from F344 rats induced with asbestos, produces tumors within three weeks, with extended metastasis in normal tissues, after intraperitoneal inoculation in syngeneic rats. The optimal concentration/time conditions for killing M5-T1 cells with curcumin were first determined in vitro. Secondly, the potential of intraperitoneal curcumin administration to kill tumor cells in vivo was evaluated in tumor-bearing rats, in comparison with a reference epigenetic drug, SAHA. Both agents administered at days 21 and 26 after tumor challenge produced necrosis within the solid tumors at day 28. However, tumor tissue necrosis induced with curcumin was much more extensive than with SAHA, and was characterized by infiltration with mononuclear phagocytic cells. In contrast, tumor tissue treated with SAHA contained foci of resistant cells and was infiltrated by many isolated CD8+ cells. The treatment of tumor-bearing rats with 1.5 mg/kg curcumin on days 7, 9, 11 and 14 after tumor challenge dramatically reduced the mean total tumor mass at day 16. Clusters of CD8+ T lymphocytes were observed at the periphery of small residual tumor masses in the peritoneal cavity, which presented a significant reduction in mitotic index, IL6 and vimentin expression compared with tumors in untreated rats. These data open up interesting new prospects for the therapy of sarcomatoid mesothelioma with curcumin and its derivatives.

10.
J Food Sci Technol ; 53(3): 1649-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27570290

RESUMO

The current healthy life style pushed to develop and implement a novel efficient defatting process of high quality called "Mechanical Expression Preserving Shape Integrity" that conserved the sensory, color, textural, morphological and acceptability of partially defatted roasted peanuts. In this study, Response Surface Methodology was used to investigate the best extraction parameters (initial water content, pressure and pressing duration) based on the highest Color Consumer Evaluation scores, the best colorimetric parameters (L*, a*, b*, ΔE*) and the most appealing textural attributes (Fracturability, First Fracture Work Done, First Fracture Percentage of Deformation, Rupture Force, Percentage of Deformation at Rupture). Experimental results showed that defatting promotes a lighter and neutral grain color, higher fracturability and rupture force as well as higher deformation strength. Aiming to retain most of the colorimetric and textural properties after defatting and roasting, it was found that peanuts should be hydrated to 7 % d.b. and treated at 4.74 MPa for 14.22 min.

11.
Oncotarget ; 7(23): 34664-87, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129173

RESUMO

Malignant mesothelioma (MM) is one of the worst cancers in terms of clinical outcome, urging the need to establish and characterize new preclinical tools for investigation of the tumorigenic process, improvement of early diagnosis and evaluation of new therapeutic strategies. For these purposes, we characterized a collection of 27 cell lines established from F344 rats, after 136 to 415 days of induction with crocidolite asbestos administered intraperitoneally. Four mesotheliomas were distinguished from 23 preneoplastic mesothelial cell lines (PN) according to their propensity to generate tumors after orthotopic transplantation into syngeneic rats, their growth pattern, and the expression profile of three genes. PN cell lines were further discriminated into groups / subgroups according to morphology in culture and the expression profiles of 14 additional genes. This approach was completed by analysis of positive and negative immunohistochemical MM markers in the four tumors, of karyotype alterations in the most aggressive MM cell line in comparison with a PN epithelioid cell line, and of human normal mesothelial and mesothelioma cells and a tissue array. Our results showed that both the rat and human MM cell lines shared in common a dramatic decrease in the relative expression of Cdkn2a and of epigenetic regulators, in comparison with PN and normal human mesothelial cells, respectively. In particular, we identified the involvement of the relative expression of the Ten-Eleven Translocation (TET) family of dioxygenases and Dnmt3a in relation to the 5-hydroxymethylcytosine level in malignant transformation and the acquisition of metastatic potential.


Assuntos
5-Metilcitosina/análogos & derivados , Transformação Celular Neoplásica/patologia , Inibidor de Quinase Dependente de Ciclina p18/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Oxigenases de Função Mista/metabolismo , Lesões Pré-Cancerosas/patologia , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/metabolismo , Animais , Asbesto Crocidolita/toxicidade , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina , DNA Metiltransferase 3A , Células Epiteliais/patologia , Epitélio/patologia , Humanos , Cariótipo , Neoplasias Pulmonares/induzido quimicamente , Mesotelioma/induzido quimicamente , Mesotelioma Maligno , Ratos , Ratos Endogâmicos F344
12.
Food Chem ; 197 Pt B: 1215-25, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26675860

RESUMO

The main purpose of this study was to extract the maximum amount of oil from peanuts without causing major damage and preserving their organoleptic quality after defatting. Accordingly, a successful, healthy, eco-friendly and economic defatting process for peanuts was implemented using mechanical oil expression, which was optimized by means of Response Surface Methodology. The results demonstrated that maximum extraction yields were obtained at a low initial moisture content (5-7% d.b.). Defatting and deformation ratios were mostly affected by the pressure and water content with high correlation coefficients (98.4% and 97.5%, respectively), and overall acceptability decreased following higher oil extraction yields. It was concluded that the optimum values for the product moisture content, pressure, and pressing duration were 5% d.b., 9.7 MPa and 4 min, respectively, with a defatting ratio of 70.6%. This resulted in an insignificant irreversible deformation ratio (<1%) and an overall acceptability of 7.6 over 10.


Assuntos
Arachis/química , Lipídeos/análise , Pressão , Sensação
13.
Neuropharmacology ; 87: 214-21, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24709540

RESUMO

Methamphetamine toxicity is associated with cell death and loss of dopamine neuron terminals in the striatum similar to what is found in some neurodegenerative diseases. Conversely, the endocannabinoid system (ECS) has been suggested to be neuroprotective in the brain, and new pharmacological tools have been developed to increase their endogenous tone. In this study, we evaluated whether ECS stimulation could reduce the neurotoxicity of high doses of methamphetamine on the dopamine system. We found that methamphetamine alters the levels of the major endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in the striatum, suggesting that the ECS participates in the brain responses to methamphetamine. Δ(9)-tetrahydrocannabinol (THC), a cannabis-derived agonist of both CB1 and CB2 cannabinoid receptors, or inhibitors of the main enzymes responsible for the degradation of AEA and 2-AG (URB597 and JZL184, respectively), blunted the decrease in striatal protein levels of tyrosine hydroxylase induced by methamphetamine. In addition, antagonists of CB2, but not of CB1, blocked the preventive effects of URB597 and JZL184, suggesting that only the former receptor subtype is engaged in neuroprotection exerted by ECS stimulation. Finally, we found that methamphetamine increases striatal levels of the cytokine tumor necrosis factor alpha, an effect that was blocked by ECS stimulation. Altogether, our results indicate that stimulation of ECS prior to the administration of an overdose of methamphetamine considerably reduces the neurotoxicity of the drug through CB2 receptor activation and highlight a protective function for the ECS against the toxicity induced by drugs and other external insults to the brain. This article is part of the Special Issue entitled 'CNS Stimulants'.


Assuntos
Moduladores de Receptores de Canabinoides/farmacologia , Estimulantes do Sistema Nervoso Central/toxicidade , Metanfetamina/toxicidade , Neostriado/efeitos dos fármacos , Síndromes Neurotóxicas/prevenção & controle , Receptor CB2 de Canabinoide/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Carbamatos/farmacologia , Dronabinol/farmacologia , Endocanabinoides/metabolismo , Inibidores Enzimáticos/farmacologia , Glicerídeos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neostriado/metabolismo , Síndromes Neurotóxicas/metabolismo , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Distribuição Aleatória , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
15.
Neuropsychopharmacology ; 37(7): 1579-87, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22334125

RESUMO

Life experiences, especially during critical periods of maturation, such as adolescence, can dramatically affect vulnerability to diseases at adulthood. Early exposure to positive environmental conditions such as environmental enrichment (EE) has been shown to reduce the occurrence and the intensity of neurological and psychiatric disorders including drug addiction. However, whether or not exposure to EE during early stages of life would protect from addiction when, at adulthood, individuals may find themselves in non-enriched conditions has not been investigated. Here we show that switching mice from EE to non-enriched standard environments not only results in the loss of the preventive effects of EE but also increases the rewarding effects of cocaine. This enhanced vulnerability is associated with emotional distress and with increased levels in the mRNA levels of corticotropin releasing factor (CRF) in the bed nucleus of the stria terminalis (BNST), as well as with increases in CREB phosphorylation in the BNST and in the shell of the nucleus accumbens. The increased sensitivity to the rewarding effects of cocaine is completely blocked by the CRF antagonist antalarmin, confirming a major role of the CRF system in the negative consequences of this environmental switch. These results indicate that positive life conditions during early stages of life, if they are not maintained at adulthood, may have negative emotional consequences and increase the risks to develop drug addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Meio Ambiente , Núcleo Accumbens/efeitos dos fármacos , Núcleos Septais/efeitos dos fármacos , Animais , Comportamento Aditivo/genética , Comportamento Aditivo/metabolismo , Comportamento Animal/efeitos dos fármacos , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/genética , Hormônio Liberador da Corticotropina/genética , Inibidores da Captação de Dopamina/farmacologia , Abrigo para Animais , Masculino , Camundongos , Núcleo Accumbens/metabolismo , Fosforilação/efeitos dos fármacos , Núcleos Septais/metabolismo
16.
Brain Res ; 1390: 80-9, 2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21419109

RESUMO

Early environmental enrichment (EE) produces several changes in gene expression in the brain and confers protection against the behavioral, neurochemical and molecular effects of repeated administration of drugs of abuse. Because the endogenous cannabinoid system (ECS) is known to play an important role in the rewarding effects of drugs, we investigated whether the positive effects of early exposure to EE are associated with changes in the expression of genes encoding for proteins that belong to the ECS in C57 mice. Using in situ hybridization, we compared the expression of the cannabinoid receptor CB1, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL) enzymes in brain regions involved in drug addiction in mice reared in either EE or standard environments (SE) from weaning until adulthood. We found that EE increases CB1 mRNA levels in the hypothalamus and in the basolateral amygdala but decreased them in the basomedial amygdala. Similarly, we found that FAAH mRNA levels are higher in the hypothalamus and the basolateral amygdala of EE mice compared to SE mice, with no change in the basomedial amygdala. In contrast, MGL mRNA levels were not affected by EE in any of the areas analyzed. The regional selectivity of EE-induced changes may indicate that early exposure to EE induces changes in the ECS that could result in reduced responses to stress, as confirmed in EE mice in a novelty-induced suppression of feeding test, and, ultimately, in resistance to addiction.


Assuntos
Moduladores de Receptores de Canabinoides/genética , Endocanabinoides , Meio Ambiente , Regulação da Expressão Gênica no Desenvolvimento , Receptor CB1 de Canabinoide/genética , Fatores Etários , Amidoidrolases/biossíntese , Amidoidrolases/genética , Animais , Comportamento Aditivo/genética , Comportamento Aditivo/metabolismo , Comportamento Aditivo/prevenção & controle , Moduladores de Receptores de Canabinoides/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/biossíntese , Monoacilglicerol Lipases/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Distribuição Aleatória , Receptor CB1 de Canabinoide/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA