Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141340, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301836

RESUMO

Nanoarchitectured design of the metal sulfides with highly available surface and abundant electroactive centers and using them as electrocatalyst for fabricate the electrochemical sensors for the detection of hydrazine (N2H4) and hydrogen peroxide (H2O2) is challenging and desirable. Herein, Cu2O nanospheres powder is firstly prepared using chemical reduction of copper chloride and then drop-casted on the glassy carbon electrode (GCE) surface. In the next step, CoFeS nanoflakes are electrodeposited on Cu2O nanospheres by cyclic voltammetry method to form CoFeS/Cu2O nanocomposite as a detection platform for measuring N2H4 and H2O2. Accordingly, Cu2O nanospheres are not only used as substrate, but also guided the CoFeS nanoflakes to adhere to the electrode surface without need to any binder or conductive additive, which enhances the electrical conductivity of the sensing active materials. As the hydrazine sensor, the CoFeS/Cu2O/GCE displayed wide linear ranges (0.0001-0.021 mM and 0.021-1.771 mM), low detection limit (0.12 µM), very high sensitivities (103.33 and 21.23 mA mM-1 cm-2), and excellent selectivity. The as-made nanocomposite also exhibited low detection limit of 1.26 µM for H2O2 sensing with very high sensitivities (12.31 and 3.96 mA mM-1 cm-2) for linear ranges of 0.001-0.03 mM and 0.03-2.03 mM, respectively, and negligible response against interfering substances. The superior analytical performance of the CoFeS/Cu2O for N2H4 electro-oxidation and H2O2 electro-reduction can be attributed to structure stability, high electroactive surface area, and good availability to analyte species and electrolyte diffusion. Moreover, to examine the potency of the prepared nanocomposite in real applications, the seawater sample was analyzed and results display that the CoFeS/Cu2O/GCE can be utilized as a reliable and applicable platform for measuring N2H4 and H2O2.


Assuntos
Peróxido de Hidrogênio , Nanosferas , Peróxido de Hidrogênio/química , Cobre/química , Galvanoplastia , Carbono/química , Eletrodos , Técnicas Eletroquímicas/métodos
2.
Nanoscale ; 14(25): 9150-9168, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35723639

RESUMO

The increasing energy demand for next-generation portable and miniaturized electronics has drawn tremendous attention to develop microscale energy storage and conversion devices with light weight and flexible characteristics. Herein, we report the preparation of flower-like cobalt vanadium selenide/nickel copper selenide (CoVSe/NiCuSe) microspheres with three-dimensional hierarchical structure of micropore growth on copper wire for a flexible fiber microsupercapacitor (microSC) and overall water splitting. The CoV-LDH microspheres are anchored on the dendrite-like NiCu nanostructured Cu wire using a hydrothermal method (CoV-LDH/NiCu@CW). The sulfidation and selenization of CoV-LDH/NiCu was carried out through the ion-exchange reaction of OH- with sulfide and selenide ions to obtain CoVS/NiCuS@CW and CoVSe/NiCuSe@CW electrodes, respectively. Benefitting from the unique structure, the flower-like CoVSe/NiCuSe@CW microspheres exhibit better electrochemical performance compared with other as-prepared fiber-shaped electrodes. As an electrode active material for microSC, CoVSe/NiCuSe microspheres exhibit a specific capacitance of 35.40 F cm-3 at 4 mA cm-2, and maintain 281.25 F cm-3 even at a high current density of 83 mA cm-2, indicating outstanding charge storage capacitance and excellent rate capability. Moreover, the assembled flexible solid-state asymmetric microSCs based on flower-like CoVSe/NiCuSe microspheres-coated Cu wire as the positive electrode and polypyrrole/reduced graphene oxide-coated carbon fiber as the negative electrode manifests a maximum energy density of 20.17 mW h cm-3 at a power density of 624.32 mW cm-3 and remarkable cycling stability (96.7% after 5000 cycles) with good mechanical stability. As an electrocatalyst for oxygen and hydrogen evolution reactions in alkaline medium, the CoVSe/NiCuSe electrode delivers an overpotential of 297 mV and 165 mV at 100 mA cm-2. Furthermore, the CoVSe/NiCuSe-based electrolysis cell for overall water splitting presents a low cell voltage (1.7 V at 50 mA cm-2) as well as high durability.

3.
J Colloid Interface Sci ; 542: 325-338, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30763900

RESUMO

Wire-shaped micro-supercapacitors attracted extensive attentions in next-generation portable and wearable electronics, due to advantages of miniature size, lightweight and flexibility. Herein, NiMoO4 nanorods supported on Ni film coated Cu wire are successfully fabricated thorough direct deposition of Ni film onto Cu wire as the conductive substrate, followed by growth of the NiMoO4 nanorods on Ni film coated Cu wire substrate by means a hydrothermal annealing process. The prepared 3D, porous electrode demonstrates extremely high areal specific capacitance of 12.03F cm-2 at the current density of 4 mA cm-2 and retained capacitance of 8.23 F cm-2 at a much higher current density of 80 mAcm-2. The electrode, also, shows an excellent cycling stability with capacitance retention of 99.3% after 3000 cycles. The superior electrochemical performance can be attributed to the high area surface, low contact resistance between NiMoO4 nanorods and Cu wire current collector and presence of a 3D and porous structure provides many electroactive sites and sufficient open space for easy diffusion of the electrolyte ions during redox reactions. Benefiting from their structural features, a fiber shaped asymmetric micro-supercapacitor based on NiMoO4/Ni film/Cu wire as the positive electrode and carbon fiber coated with reduced graphene oxide as the negative electrode is assembled. The fabricated fiber device presents a wide potential window between 0 and 1.7 V and exhibits high specific capacitance of 0.504F cm-2 (38.8F cm-3) at a current density of 4.8 mA cm-2 with a high energy density of 202 µWh cm-2 (15.6 mWh cm-3) at a power density of 4050 µW cm-2 (313 mWh cm-3). The energy density retains 124 µWh cm-2 (9.54 mWh cm-3) when the power density is increased to 13530 µW cm-2 (1040.73 mWh cm-3). In addition, the asymmetric device exhibits an outstanding cycling stability (98.5% capacitance retention after 1000 consecutive cycles) and good mechanical stability. Therefore, this work suggested the promising potential of NiMoO4 nanorods supported on Ni film coated Cu wire as an advanced electrode material for construction of flexible and portable next-generation energy storage micro-devices with superior electrochemical performances.

4.
Mater Sci Eng C Mater Biol Appl ; 61: 842-50, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26838915

RESUMO

The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the glassy carbon electrode modified with different carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG), graphene oxide (GO), reduced graphene oxide (RGO) and RGO-CNT hybrids (various ratios) using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable increase in the cathodic peak current of Fu at the RGO modified GCE, compared to other modified electrodes and also bare GCE. The surface morphology and nature of the RGO film was thoroughly characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode showed two linear dynamic ranges of 0.001-2.0 µM and 2.0-10.0 µM with a detection limit of 0.3 nM for the voltammetric determination of Fu. This sensor was used successfully for Fu determination in pharmaceutical and clinical preparations.


Assuntos
Técnicas Eletroquímicas , Furazolidona/análise , Nanoestruturas/química , Nanotubos de Carbono/química , Carbono/química , Diamante/química , Espectroscopia Dielétrica , Eletrodos , Grafite/química , Concentração de Íons de Hidrogênio , Limite de Detecção , Microscopia Eletrônica de Varredura , Óxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA