Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Parasit Dis ; 47(2): 363-368, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37193496

RESUMO

The emerging of drug resistant against Leishmania parasites prompts scientists to seek for novel therapeutic strategies against theses infectious protozoan parasites. Among different strategies, the use of larvae secretions could be suggested as a possible therapy with low side effects. Accordingly, the current study evaluated the in vitro and in vivo effects of Lucilia sericata larval secretions on Leishmania major, the causative agent of cutaneous leishmaniasis (CL). After preparation of L. sericata larval stages (L2 and L3) secretions, the potential effects of secretions were evaluated against L. major promastigotes and amastigotes (in vitro) using MTT assay. The cytotoxicity effects of secretions were also checked on uninfected macrophages. In addition, in vivo experiments were also conducted to investigate the effects of larvae's secretions on the CL lesions induced in the BALB/c mice. Although the increased concentration of larvae secretions exhibited a direct effect on the promastigotes proliferation (viability), contrarily, L2 secretions at a concentration of 96 µg/ml represented the highest inhibitory effect on parasite (amastigotes) burden in infected macrophages. Interestingly, L3 secretions > 60 µg/ml induced inhibitory effects on amastigotes. The results relevant to the cytotoxicity effects of L2 and L3 secretions on uninfected-macrophages showed a dose dependent correlation. In vivo results were also significant, compared to the positive control group. This study suggested the plausible inhibitory effects of L. sericata larvae's secretions on the L. major amastigotes and CL lesions progression. It seems that the characterization of all effective components/proteins in the larvae secretions and their specific targets in parasite structure or in cell (macrophage) responses could further reveal more details regarding the anti-leishmanial properties of these compounds.

2.
Iran J Parasitol ; 15(4): 568-575, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33884014

RESUMO

BACKGROUND: Toxoplasmosis is a zoonotic disease caused by the obligate intracellular parasite, Toxoplasma gondii. This global infectious disease has been associated with behavioral changes in rodents and can result in humans' neuropsychiatric symptoms. Since the neurotransmitters alteration can cause a behavioral change, in this study, tyrosine level, as a precursor of dopamine, was evaluated in acute murine toxoplasmosis during 2015 and 2016 in Shiraz, Iran. METHODS: At the first, 105 tachyzoites of T. gondii were subcutaneously inoculated to 50 BALB/c mice as experimental groups and 10 mice inoculated by PBS considered as the control group. After that, daily, one group of mice was bled, and sera were collected. Then, their serum tyrosine level was evaluated by HPLC method. RESULTS: After data analysis, the maximum mean serum tyrosine level was seen at 2th day of post parasite inoculation (0.0194 mg/ ml), with a significant difference compared to the control group (0.0117 mg/ ml, P=0.025). Moreover, the least quantity of serum tyrosine (0.076 mg/ml) was seen on the 5th day, after parasite inoculation, however, no significant difference was seen. CONCLUSION: Serum tyrosine level increased in 2 d after inoculation of Toxoplasma, but the level regularly decreased in successive days. Tyrosine level increased by phenylalanine hydroxylase 2 days after inoculation, then tyrosine decreased by tyrosine hydroxylase in the next days. Toxoplasma tyrosine hydroxylase enzymes, at primary days of toxoplasmosis, effect on tyrosine production, and after that, the most effect on tyrosine consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA