Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 2281, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500551

RESUMO

In vitro neuronal models are essential for studying neurological physiology, disease mechanisms and potential treatments. Most in vitro models lack controlled vasculature, despite its necessity in brain physiology and disease. Organ-on-chip models offer microfluidic culture systems with dedicated micro-compartments for neurons and vascular cells. Such multi-cell type organs-on-chips can emulate neurovascular unit (NVU) physiology, however there is a lack of systematic data on how individual cell types are affected by culturing on microfluidic systems versus conventional culture plates. This information can provide perspective on initial findings of studies using organs-on-chip models, and further optimizes these models in terms of cellular maturity and neurovascular physiology. Here, we analysed the transcriptomic profiles of co-cultures of human induced pluripotent stem cell (hiPSC)-derived neurons and rat astrocytes, as well as one-day monocultures of human endothelial cells, cultured on microfluidic chips. For each cell type, large gene expression changes were observed when cultured on microfluidic chips compared to conventional culture plates. Endothelial cells showed decreased cell division, neurons and astrocytes exhibited increased cell adhesion, and neurons showed increased maturity when cultured on a microfluidic chip. Our results demonstrate that culturing NVU cell types on microfluidic chips changes their gene expression profiles, presumably due to distinct surface-to-volume ratios and substrate materials. These findings inform further NVU organ-on-chip model optimization and support their future application in disease studies and drug testing.


Assuntos
Astrócitos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Microfluídica , Neurônios/metabolismo , Transcriptoma/genética , Animais , Adesão Celular/genética , Diferenciação Celular/genética , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Neurônios/citologia , Ratos
2.
Mol Psychiatry ; 23(5): 1356-1367, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28416808

RESUMO

Synapse development and neuronal activity represent fundamental processes for the establishment of cognitive function. Structural organization as well as signalling pathways from receptor stimulation to gene expression regulation are mediated by synaptic activity and misregulated in neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID). Deleterious mutations in the PTCHD1 (Patched domain containing 1) gene have been described in male patients with X-linked ID and/or ASD. The structure of PTCHD1 protein is similar to the Patched (PTCH1) receptor; however, the cellular mechanisms and pathways associated with PTCHD1 in the developing brain are poorly determined. Here we show that PTCHD1 displays a C-terminal PDZ-binding motif that binds to the postsynaptic proteins PSD95 and SAP102. We also report that PTCHD1 is unable to rescue the canonical sonic hedgehog (SHH) pathway in cells depleted of PTCH1, suggesting that both proteins are involved in distinct cellular signalling pathways. We find that Ptchd1 deficiency in male mice (Ptchd1-/y) induces global changes in synaptic gene expression, affects the expression of the immediate-early expression genes Egr1 and Npas4 and finally impairs excitatory synaptic structure and neuronal excitatory activity in the hippocampus, leading to cognitive dysfunction, motor disabilities and hyperactivity. Thus our results support that PTCHD1 deficiency induces a neurodevelopmental disorder causing excitatory synaptic dysfunction.


Assuntos
Disfunção Cognitiva/metabolismo , Proteínas de Membrana/deficiência , Sinapses/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cognição/fisiologia , Disfunção Cognitiva/genética , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Hipocampo/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Transdução de Sinais , Sinapses/genética , Transmissão Sináptica
3.
Small GTPases ; 8(2): 106-113, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-27492682

RESUMO

Activity-dependent modifications in the strength of excitatory synapses are considered to be major cellular mechanisms that contribute to the plasticity of neuronal networks underlying learning and memory. Key mechanisms for the regulation of synaptic efficacy involve the dynamic changes in size and number of dendritic spines, as well as the synaptic incorporation and removal of AMPA-type glutamate receptors (AMPAr). As key regulators of the actin cytoskeleton, the Rho subfamily of GTP-binding proteins play a critical role in synaptic development and plasticity. They shuttle between the active GTP-bound form and the inactive GDP-bound form under the regulation of dedicated guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). More than 80 human GEFs and 70 GAPs have been identified, most of which are expressed in the brain with a specific spatial and temporal expression pattern. However, the function of most GEFs and GAPs in the brain has not been elucidated. In this review, we highlight the novel neuronal function of the synaptic RhoGAP ARHGAP12 and the ID-associated RhoGEF TRIO and further propose 3 possible approaches of neurons utilizing Rho GTPase regulatory proteins to accurately modulate synaptic function.


Assuntos
Sinapses/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Transdução de Sinais
4.
Cell Rep ; 14(6): 1355-1368, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26854232

RESUMO

The molecular mechanisms that promote excitatory synapse development have been extensively studied. However, the molecular events preventing precocious excitatory synapse development so that synapses form at the correct time and place are less well understood. Here, we report the functional characterization of ARHGAP12, a previously uncharacterized Rho GTPase-activating protein (RhoGAP) in the brain. ARHGAP12 is specifically expressed in the CA1 region of the hippocampus, where it localizes to the postsynaptic compartment of excitatory synapses. ARHGAP12 negatively controls spine size via its RhoGAP activity and promotes, by interacting with CIP4, postsynaptic AMPA receptor endocytosis. Arhgap12 knockdown results in precocious maturation of excitatory synapses, as indicated by a reduction in the proportion of silent synapses. Collectively, our data show that ARHGAP12 is a synaptic RhoGAP that regulates excitatory synaptic structure and function during development.


Assuntos
Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Associadas aos Microtúbulos/genética , Antígenos de Histocompatibilidade Menor/genética , Células Piramidais/metabolismo , Receptores de AMPA/genética , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Espinhas Dendríticas/fisiologia , Espinhas Dendríticas/ultraestrutura , Embrião de Mamíferos , Endocitose , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Técnicas de Patch-Clamp , Cultura Primária de Células , Células Piramidais/citologia , Ratos , Ratos Wistar , Receptores de AMPA/metabolismo , Análise de Célula Única , Sinapses/ultraestrutura , Transmissão Sináptica , Técnicas de Cultura de Tecidos
5.
Transl Psychiatry ; 5: e655, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26460479

RESUMO

Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo)phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13(-/-) mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13(-/-) mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Hipocampo , Ácido gama-Aminobutírico/metabolismo , Animais , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Caderinas/genética , Modelos Animais de Doenças , Genes Supressores de Tumor , Hipocampo/metabolismo , Hipocampo/patologia , Interneurônios/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Camundongos , Psicopatologia , Transmissão Sináptica/genética
6.
Cell Mol Life Sci ; 69(1): 89-102, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21833581

RESUMO

MicroRNAs (miRNAs) constitute a class of small, non-coding RNAs that act as post-transcriptional regulators of gene expression. In neurons, the functions of individual miRNAs are just beginning to emerge, and recent studies have elucidated roles for neural miRNAs at various stages of neuronal development and maturation, including neurite outgrowth, dendritogenesis, and spine formation. Notably, miRNAs regulate mRNA translation locally in the axosomal and synaptodendritic compartments, and thereby contribute to the dynamic spatial organization of axonal and dendritic structures and their function. Given the critical role for miRNAs in regulating early brain development and in mediating synaptic plasticity later in life, it is tempting to speculate that the pathology of neurological disorders is affected by altered expression or functioning of miRNAs. Here we provide an overview of recently identified mechanisms of neuronal development and plasticity involving miRNAs, and the consequences of miRNA dysregulation.


Assuntos
Encéfalo , MicroRNAs , Doenças do Sistema Nervoso , Neurogênese/fisiologia , Plasticidade Neuronal/genética , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Neurônios/fisiologia , Biossíntese de Proteínas/fisiologia , Ratos
7.
Cell Calcium ; 32(2): 71-81, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12161107

RESUMO

Human neuroblastoma SH-SY5Y cells, predominantly expressing type 1 inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R), were stably transfected with IP(3)R type 3 (IP(3)R3) cDNA. Immunocytochemistry experiments showed a homogeneous cytoplasmic distribution of type 3 IP(3)Rs in transfected and selected high expression cloned cells. Using confocal Ca(2+) imaging, carbachol (CCh)-induced Ca(2+) release signals were studied. Low CCh concentrations (< or = 750 nM) evoked baseline Ca(2+) oscillations. Transfected cells displayed a higher CCh responsiveness than control or cloned cells. Ca(2+) responses varied between fast, large Ca(2+) spikes and slow, small Ca(2+) humps, while in the clone only Ca(2+) humps were observed. Ca(2+) humps in the transfected cells were associated with a high expression level of IP(3)R3. At high CCh concentrations (10 microM) Ca(2+) transients in transfected and cloned cells were similar to those in control cells. In the clone exogenous IP(3)R3 lacked the C-terminal channel domain but IP(3)-binding capacity was preserved. Transfected cells mainly expressed intact type 3 IP(3)Rs but some protein degradation was also observed. We conclude that in transfected cells expression of functional type 3 IP(3)Rs causes an apparent higher affinity for IP(3). In the clone, the presence of degraded receptors leads to an efficient cellular IP(3) buffer and attenuated IP(3)-evoked Ca(2+) release.


Assuntos
Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio/genética , Cálcio/metabolismo , Células Eucarióticas/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Sinalização do Cálcio/efeitos dos fármacos , Carbacol/farmacologia , Divisão Celular/genética , Agonistas Colinérgicos/farmacologia , Células Clonais/citologia , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Imuno-Histoquímica , Receptores de Inositol 1,4,5-Trifosfato , Neuroblastoma , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA