Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 17(3): 598-608, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35253423

RESUMO

Isoquinoline alkaloids are a large class of natural products with a broad range of biological activities, including antimicrobial, antitumor, antileukemic and anti-inflammatory properties. Although mostly found in plants, isoquinolines can also be found in the extracts of bacterial and fungal cultures. Regardless of the origin, most of the reported biosynthetic routes for isoquinolines use tyrosine as a main biosynthetic precursor. Here, we report the identification of a new biosynthetic pathway for production of isoquinolinequinone alkaloid mansouramycin D in Streptomyces albus Del14. Using feeding, mass spectrometry, and nuclear magnetic resonance spectroscopy, we demonstrate that tryptophan serves instead of tyrosine as a main mansouramycin biosynthetic precursor. The biosynthetic genes were identified in the chromosome of the strain by using gene inactivation and heterologous expression. Insights into the biosynthesis of mansouramycins are also presented.


Assuntos
Alcaloides , Isoquinolinas , Alcaloides/química , Vias Biossintéticas/genética , Isoquinolinas/metabolismo , Tirosina/metabolismo
2.
Planta Med ; 88(5): 380-388, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34352920

RESUMO

Pyrethrum pulchrum is a rare Mongolian plant species that has been traditionally used as an ingredient in various remedies. Bioactivity-guided fractionation performed on the methanol extract of its aerial parts led to the isolation of 2 previously undescribed guaianolide-type sesquiterpene lactones, namely 1ß,10ß-epoxy-8α-hydroxyguaia-3,11(13)-dien-6,12-olide (1: ) and 1,8,10-trihydroxyguaia-3,11(13)-dien-6,12-olide (2: ), along with the isolation or chromatographic identification of 11 compounds, arglabin (3: ), 3ß-hydroxycostunolide (4: ), isocostic acid (5: ), (E)-9-(2-thienyl)-6-nonen-8-yn-3-ol (6: ), (Z)-9-(2-thienyl)-6-nonen-8-yn-3-ol (7: ), N 1,N 5,N 10,N 14-tetra-p-coumaroyl spermine (8: ), chlorogenic acid (9: ), 3,5-di-O-caffeoylquinic acid (10: ), 3,5-di-O-caffeoylquinic acid methyl ester (11: ), 3,4-di-O-caffeoylquinic acid (12: ), and tryptophan (13: ). Their structures were assigned based on spectroscopic and spectrometric data. The antimicrobial, antiproliferative and cytotoxic activities of selected compounds were evaluated. The new compounds showed weak to moderate antimicrobial activity. Arglabin (3: ), the major sesquiterpene lactone found in the methanol extract of P. pulchrum, exhibited the highest activity against human cancer lines, while compound 1: also possesses significant antiproliferative activity against leukemia cells.


Assuntos
Asteraceae , Chrysanthemum cinerariifolium , Sesquiterpenos , Asteraceae/química , Lactonas/química , Metanol , Compostos Fitoquímicos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sesquiterpenos/química
3.
Molecules ; 26(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771113

RESUMO

Phytochemical investigation of the ethanol extract of underground parts of Iris tenuifolia Pall. afforded five new compounds; an unusual macrolide termed moniristenulide (1), 5-methoxy-6,7-methylenedioxy-4-O-2'-cycloflavan (2), 5,7,2',3'-tetrahydroxyflavanone (3), 5-hydroxy-6,7-dimethoxyisoflavone-2'-O-ß-d-glucopyranoside (9), 5,2',3'-dihydroxy-6,7-dimethoxyisoflavone (10), along with seven known compounds (4-8, 11-12). The structures of all purified compounds were established by analysis of 1D and 2D NMR spectroscopy and HR-ESI-MS. The antimicrobial activity of the compounds 1-3, 5, 9, and 10 was investigated using the agar diffusion method against fungi, Gram-positive and Gram-negative bacteria. In consequence, new compound 3 was found to possess the highest antibacterial activity against Enterococcus faecalis VRE and Mycobacterium vaccae. Cell proliferation and cytotoxicity tests were also applied on all isolated compounds and plant crude extract in vitro with the result of potent inhibitory effect against leukemia cells. In particular, the newly discovered isoflavone 10 was active against both of the leukemia cells K-562 and THP-1 while 4-6 of the flavanone type compounds were active against only THP-1.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Cromanos/farmacologia , Gênero Iris/química , Extratos Vegetais/farmacologia , Anti-Infecciosos/química , Antineoplásicos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromanos/química , Relação Dose-Resposta a Droga , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estrutura Molecular , Extratos Vegetais/química
4.
Nat Prod Res ; 35(24): 5960-5963, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32799581

RESUMO

Pyrethrum pulchrum Ledeb. has been a phytochemically unexplored Mongolian medicinal folklore plant. In this study, its total flavonoid content was determined and fourteen flavonoids (1-14) were isolated from the aerial parts of P. pulchrum. Their structures were elucidated on the basis of spectroscopic data. The compounds 12-14, methoxyflavones, were tested for antiproliferative and cytotoxic activity against A549, HeLa, K-562, THP-1 and HUVEC cell lines. This is the first report on the effects of 5,7,4'-trihydroxy-3,6,3'-trimethoxyflavone (13) against all tested cell lines and it exhibited potent activity against chronic myeloid leukemia K-562 and acute monocytic leukemia THP-1 cells, each with GI50 value at 2.0 µg/mL. The 5,4'-dihydroxy-3,6,7,3'-tetramethoxyflavone (14) showed the most potent activity against THP-1 (GI50 = 1.1 µg/mL) and the highest cytotoxicity (5.6 µg/mL). In addition, acute toxicity of plant ethanol extract was evaluated and the lethal dose (LD50) was estimated at 1048 mg/kg.


Assuntos
Chrysanthemum cinerariifolium , Plantas Medicinais , Linhagem Celular Tumoral , Flavonoides/farmacologia , Extratos Vegetais/farmacologia
5.
Biomolecules ; 10(7)2020 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708402

RESUMO

Pyrrolopyrimidines are an important class of natural products with a broad spectrum of biological activities, including antibacterial, antifungal, antiviral, anticancer or anti-inflammatory. Here, we present the identification of a biosynthetic gene cluster from the rare actinomycete strain Kutzneria albida DSM 43870, which leads to the production of huimycin, a new member of the pyrrolopyrimidine family of compounds. The huimycin gene cluster was successfully expressed in the heterologous host strain Streptomyces albus Del14. The compound was purified, and its structure was elucidated by means of nuclear magnetic resonance spectroscopy. The minimal huimycin gene cluster was identified through sequence analysis and a series of gene deletion experiments. A model for huimycin biosynthesis is also proposed in this paper.


Assuntos
Actinobacteria/genética , Produtos Biológicos/metabolismo , Vias Biossintéticas , Família Multigênica , Pirimidinas/metabolismo , Pirróis/metabolismo , Actinobacteria/metabolismo , Expressão Gênica , Genes Bacterianos , Streptomyces/genética , Streptomyces/metabolismo
6.
Microorganisms ; 8(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392775

RESUMO

Natural products produced by bacteria found in unusual and poorly studied ecosystems, such as Lake Baikal, represent a promising source of new valuable drug leads. Here we report the isolation of a new Streptomyces sp. strain IB201691-2A from the Lake Baikal endemic mollusk Benedictia baicalensis. In the course of an activity guided screening three new angucyclines, named baikalomycins A-C, were isolated and characterized, highlighting the potential of poorly investigated ecological niches. Besides that, the strain was found to accumulate large quantities of rabelomycin and 5-hydroxy-rabelomycin, known shunt products in angucyclines biosynthesis. Baikalomycins A-C demonstrated varying degrees of anticancer activity. Rabelomycin and 5-hydroxy-rabelomycin further demonstrated antiproliferative activities. The structure elucidation showed that baikalomycin A is a modified aquayamycin with ß-d-amicetose and two additional hydroxyl groups at unusual positions (6a and 12a) of aglycone. Baikalomycins B and C have alternating second sugars attached, α-l-amicetose and α-l-aculose, respectively. The gene cluster for baikalomycins biosynthesis was identified by genome mining, cloned using a transformation-associated recombination technique and successfully expressed in S. albus J1074. It contains a typical set of genes responsible for an angucycline core assembly, all necessary genes for the deoxy sugars biosynthesis, and three genes coding for the glycosyltransferase enzymes. Heterologous expression and deletion experiments allowed to assign the function of glycosyltransferases involved in the decoration of baikalomycins aglycone.

7.
Angew Chem Int Ed Engl ; 58(37): 12930-12934, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31310031

RESUMO

Metabolic profiling of Streptomyces sp. IB2014/016-6 led to the identification of three new tetrahydroisoquinoline natural products, perquinolines A-C (1-3). Labelled precursor feeding studies and the cloning of the pqr biosynthetic gene cluster revealed that 1-3 are assembled by the action of several unusual enzymes. The biosynthesis starts with the condensation of succinyl-CoA and l-phenylalanine catalyzed by the amino-7-oxononanoate synthase-like enzyme PqrA, representing rare chemistry in natural product assembly. The second condensation and cyclization events are conducted by PqrG, an enzyme resembling an acyl-CoA ligase. Last, ATP-grasp RimK-type ligase PqrI completes the biosynthesis by transferring a γ-aminobutyric acid or ß-alanine moiety. The discovered pathway represents a new route for assembling the tetrahydroisoquinoline cores of natural products.


Assuntos
Produtos Biológicos/metabolismo , Streptomyces/metabolismo , Tetra-Hidroisoquinolinas/metabolismo , Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Vias Biossintéticas
8.
Mar Drugs ; 16(11)2018 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-30400361

RESUMO

Streptomycetes represent an important reservoir of active secondary metabolites with potential applications in the pharmaceutical industry. The gene clusters responsible for their production are often cryptic under laboratory growth conditions. Characterization of these clusters is therefore essential for the discovery of new microbial pharmaceutical drugs. Here, we report the identification of the previously uncharacterized nybomycin gene cluster from the marine actinomycete Streptomyces albus subsp. chlorinus through its heterologous expression. Nybomycin has previously been reported to act against quinolone-resistant Staphylococcus aureus strains harboring a mutated gyrA gene but not against those with intact gyrA. The nybomycin-resistant mutants generated from quinolone-resistant mutants have been reported to be caused by a back-mutation in the gyrA gene that restores susceptibility to quinolones. On the basis of gene function assignment from bioinformatics analysis, we suggest a model for nybomycin biosynthesis.


Assuntos
Antibacterianos/metabolismo , Organismos Aquáticos/genética , Família Multigênica , Streptomyces/genética , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Organismos Aquáticos/metabolismo , Biologia Computacional , Genes Bacterianos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Quinolonas/isolamento & purificação , Quinolonas/metabolismo , Quinolonas/farmacologia , Streptomyces/metabolismo
9.
Metab Eng ; 49: 299-315, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30240601

RESUMO

We present a random rational approach enabling the construction of overproducing strains in two steps. The approach first involves creating a library of clusters of interest, in which native promoters are substituted with randomly generated constitutive synthetic promoters, and then expressing this library in an appropriate host strain. This strategy is fast, easy to use, accounts for the architecture of a cluster and completely decouples the expression of a gene cluster from complex native regulatory networks. The strategy was applied to improve the production of a macrocyclic peptide, bottromycin, which possesses antibacterial activity against multidrug-resistant bacteria and is a blueprint for a new class of antibacterials. We successfully optimized the expression of genes in operons and created several variants of the bottromycin gene cluster that provide 5-50 fold higher titres of bottromycin than the natural one, thus resulting in the identification of several new bottromycin derivatives not previously described. Moreover, due to the higher bottromycin yield, bottromycin derivatization was performed via the biosynthetic engineering of the gene cluster. The abovementioned features make this generic strategy a promising tool for the overproduction of known secondary metabolites and the activation of silent secondary metabolites in Actinobacteria.


Assuntos
Acinetobacter , Genes Bacterianos , Família Multigênica , Óperon , Transcrição Gênica , Acinetobacter/genética , Acinetobacter/metabolismo , Engenharia Metabólica , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/genética
10.
Metab Eng ; 49: 316-324, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30196100

RESUMO

Natural products are a rich source of potential drugs for many applications. Discovery of natural products through the activation of cryptic gene clusters encoding their biosynthetic pathways, engineering of those biosynthetic pathways and optimization of production yields often rely on the expression of these gene clusters in suitable heterologous host strains. Streptomyces albus J1074 provides high success rates of heterologous cluster expression with high levels of metabolite production, rapid growth and amenability to genetic manipulations. Here, we report the construction of S. albus chassis strains optimized for the discovery of natural products through heterologous expression of secondary metabolite clusters. 15 clusters encoding secondary metabolite biosynthetic pathways were deleted in the chromosome of S. albus Del14. This strain provides a substantially improved compound detection limit, owing to the lack of native secondary metabolites. Furthermore, the production yield of natural products heterologously expressed in S. albus Del14 was higher than in commonly used S. albus J1074 and S. coelicolor hosts. S. albus strains B2P1 and B4 were generated by introduction of additional phage phiC31 attB sites into the chromosome of S. albus Del14, allowing integration of up to four copies of a heterologous gene cluster. Amplification of gene clusters in the chromosome of the constructed strains further improved production yields of the encoded compounds. One cryptic cluster from Streptomyces spp. and two clusters from distantly related Frankia spp. strains were successfully activated in these new chassis strains, leading to the isolation of a new compound fralnimycin.


Assuntos
Cromossomos Bacterianos/genética , Expressão Gênica , Microrganismos Geneticamente Modificados , Família Multigênica , Streptomyces , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
11.
Sci Rep ; 7: 42382, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186197

RESUMO

Marine actinobacteria are drawing more and more attention as a promising source of new natural products. Here we report isolation, genome sequencing and metabolic profiling of new strain Streptomyces sp. MP131-18 isolated from marine sediment sample collected in the Trondheim Fjord, Norway. The 16S rRNA and multilocus phylogenetic analysis showed that MP131-18 belongs to the genus Streptomyces. The genome of MP131-18 isolate was sequenced, and 36 gene clusters involved in the biosynthesis of 18 different types of secondary metabolites were predicted using antiSMASH analysis. The combined genomics-metabolics profiling of the strain led to the identification of several new biologically active compounds. As a result, the family of bisindole pyrroles spiroindimicins was extended with two new members, spiroindimicins E and F. Furthermore, prediction of the biosynthetic pathway for unusual α-pyrone lagunapyrone isolated from MP131-18 resulted in foresight and identification of two new compounds of this family - lagunapyrones D and E. The diversity of identified and predicted compounds from Streptomyces sp. MP131-18 demonstrates that marine-derived actinomycetes are not only a promising source of new natural products, but also represent a valuable pool of genes for combinatorial biosynthesis of secondary metabolites.


Assuntos
Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Produtos Biológicos/análise , Genômica , Metabolômica , Streptomyces/genética , Streptomyces/metabolismo , Antibacterianos/biossíntese , Antibacterianos/química , Vias Biossintéticas , Genoma Bacteriano , Indóis/química , Anotação de Sequência Molecular , Família Multigênica , Filogenia , Pirróis/química , Metabolismo Secundário/genética
12.
ACS Chem Biol ; 12(3): 779-786, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28128551

RESUMO

Analysis of 122 myxobacterial genome sequences suggested 16 strains as producers of the myxochromide lipopeptide family. Detailed sequence comparison of the respective mch biosynthetic gene clusters informed a genome-mining approach, ultimately leading to the discovery and chemical characterization of four novel myxochromide core types. The myxochromide megasynthetase is subject to evolutionary diversification, resulting in considerable structural diversity of biosynthesis products. The observed differences are due to the number, type, sequence, and configuration of the incorporated amino acids. The analysis revealed molecular details on how point mutations and recombination events led to structural diversity. It also gave insights into the evolutionary scenarios that have led to the emergence of mch clusters in different strains and genera of myxobacteria.


Assuntos
Genômica , Lipopeptídeos/metabolismo , Myxococcales/genética , Família Multigênica , Myxococcales/metabolismo
13.
Future Med Chem ; 8(9): 931-47, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27253623

RESUMO

AIM: CsrA is a global post-transcriptional regulator protein affecting mRNA translation and/or stability. Widespread among bacteria, it is essential for their full virulence and thus represents a promising anti-infective drug target. Therefore, we aimed at the discovery of CsrA-RNA interaction inhibitors. Results & methodology: We followed two strategies: a screening of small molecules (A) and an RNA ligand-based approach (B). Using surface plasmon resonance-based binding and fluorescence polarization-based competition assays, (A) yielded seven small-molecule inhibitors, among them MM14 (IC50 of 4 µM). (B) resulted in RNA-based inhibitor GGARNA (IC50 of 113 µM). CONCLUSION: The first small-molecule inhibitors of the CsrA-RNA interaction were discovered exhibiting micromolar affinities. These hits represent tools to investigate the effects of CsrA-RNA interaction inhibition on bacterial virulence.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Escherichia coli/metabolismo , Ácidos Nucleicos/farmacologia , Oligonucleotídeos/farmacologia , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas Repressoras/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas de Escherichia coli/química , Ácidos Nucleicos/síntese química , Ácidos Nucleicos/química , Oligonucleotídeos/síntese química , Oligonucleotídeos/química , Ligação Proteica/efeitos dos fármacos , RNA/química , Proteínas de Ligação a RNA/química , Proteínas Repressoras/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química
14.
J Nat Prod ; 78(8): 2023-8, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26214047

RESUMO

Seven new chromone-containing polyketides, termed cystochromones A-G, were isolated from the myxobacterial strain Cystobacter sp. MCy9104. Their structures were elucidated using comprehensive NMR spectroscopy and HR-MS/MS. Cystochromones bear a pentadecyl moiety unusually attached at C-5 of the chromone ring. Moreover, isotope-labeled substrate feeding experiments and NMR analysis suggested a hybrid iso-fatty acid and polyketide synthase biosynthetic pathway for these secondary metabolites.


Assuntos
Cromonas/química , Cromonas/isolamento & purificação , Myxococcales/química , Policetídeos/química , Policetídeos/isolamento & purificação , Marcação por Isótopo , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Filipinas , Policetídeo Sintases/metabolismo
15.
Org Lett ; 16(16): 4130-3, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25058569

RESUMO

Three new siderophores, termed hyalachelins A-C (1-3), were isolated from the terrestrial myxobacterium Hyalangium minutum. Their structures were determined by 2D NMR and HR-MS/MS experiments, and their stereochemical configuration was established by a combination of NMR data, quantum mechanical calculations, and circular dichroism experiments. Hyalachelins are unusual catecholate-type siderophores that bear a 3,7,8-trihydroxy-1-oxo-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid. Their iron chelating activities were evaluated in a CAS assay showing EC50 values of ∼30 µM.


Assuntos
Myxococcales/química , Sideróforos/química , Sideróforos/isolamento & purificação , Tetra-Hidroisoquinolinas/isolamento & purificação , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Tetra-Hidroisoquinolinas/química
16.
J Am Chem Soc ; 135(45): 16904-11, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24124771

RESUMO

The microsclerodermins are unusual peptide natural products exhibiting potent antifungal activity reported from marine sponges of the genera Microscleroderma and Theonella . We here describe a variety of microbial producers of microsclerodermins and pedeins among myxobacteria along with the isolation of several new derivatives. A retrobiosynthetic approach led to the identification of microsclerodermin biosynthetic gene clusters in genomes of Sorangium and Jahnella species, allowing for the first time insights into the intriguing hybrid PKS/NRPS machinery required for microsclerodermin formation. This study reveals the biosynthesis of a "marine natural product" in a terrestrial myxobacterium where even the identical structure is available from both sources. Thus, the newly identified terrestrial producers provide access to additional chemical diversity; moreover, they are clearly more amenable to production optimization and genetic modification than the original source from the marine habitat. As sponge metagenome data strongly suggest the presence of associated myxobacteria, our findings underpin the recent notion that many previously described "sponge metabolites" might in fact originate from such microbial symbionts.


Assuntos
Antifúngicos/metabolismo , Produtos Biológicos/metabolismo , Myxococcales/fisiologia , Peptídeos/metabolismo , Poríferos/fisiologia , Simbiose , Animais , Vias Biossintéticas , Família Multigênica , Myxococcales/genética , Peptídeos/genética , Filogenia , Poríferos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA