Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Tipo de estudo
Intervalo de ano de publicação
1.
Chempluschem ; 89(8): e202400193, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38619388

RESUMO

This paper introduces a novel approach to enhance epoxy resin formulations by using SILP materials as multifunctional hardeners and fillers in composite structures reinforced with carbon and flax fibers. This study explores the integration of ionic liquids (ILs) onto a silica support structure, presenting various permutations involving silica selection, ionic liquid choice, and concentration. The focus of this study was to elucidate the influence of SILP on resin curing ability and the mechanical properties of the resulting composites. Detailed research was conducted, including Brunauer-Emmett-Teller analysis (BET) for SILP materials and curing characterization for epoxy resin formulations with different SILP materials. Furthermore, the mechanical properties of the obtained composites were determined by Scanning Electron Microscopy analysis (SEM) (the force at break, the maximum elongation at break, tensile strength, and modulus of elasticity). Through SILP incorporation, the mechanical properties of composites, including the modulus of elasticity and tensile strength, are substantially improved, a phenomenon akin to traditional filler effects. The findings highlight SILP materials as prospective candidates for concurrent hardening and filling roles within composites (through a single-step procedure, with prolonged storage stability and controlled processing conditions), particularly pertinent as the composite industry veers toward epoxy bioresins necessitating liquefaction via temperature application.

2.
Sci Total Environ ; 716: 137022, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32059297

RESUMO

The prevalence of integrons and antibiotic resistance genes (ARGs) is a serious threat for public health in the new millennium. Although commonly detected in sites affected by strong anthropogenic pressure, in remote areas their occurrence, dissemination, and transfer to other ecosystems is poorly recognized. Remote sites are considered as a benchmark for human-induced contamination on Earth. For years glaciers were considered pristine, now they are regarded as reservoirs of contaminants, thus studies on contamination of glaciers, which may be released to other ecosystems, are highly needed. Therefore, in this study we evaluated the occurrence and frequency of clinically relevant ARGs and resistance integrons in the genomes of culturable bacteria and class 1 integron-integrase gene copy number in the metagenome of cryoconite, ice and supraglacial gravel collected on two Arctic (South-West Greenland and Svalbard) and two High Mountain (the Caucasus) glaciers. Altogether, 36 strains with intI1 integron-integrase gene were isolated. Presence of class 1 integron-integrase gene was also recorded in metagenomic DNA from all sampling localities. The mean values of relative abundance of intI1 gene varied among samples and ranged from 0.7% in cryoconite from Adishi Glacier (the Caucasus) to 16.3% in cryoconite from Greenland. Moreover, antibiotic-resistant strains were isolated from all regions. Genes conferring resistance to ß-lactams (blaSHV, blaTEM, blaOXA, blaCMY), fluoroquinolones (qepA, qnrC), and chloramphenicol (cat, cmr) were detected in the genomes of bacterial isolates.


Assuntos
Camada de Gelo , Antibacterianos , Regiões Árticas , Resistência Microbiana a Medicamentos , Ecossistema , Groenlândia , Integrons , Svalbard
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA