Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38391604

RESUMO

Peri-implant diseases, such as peri-implant mucositis and peri-implantitis, are induced by dysbiotic microbiota resulting in the inflammatory destruction of peri-implant tissue. Nonetheless, there has yet to be an established protocol for the treatment of these diseases in a predictable manner, although many clinicians and researchers have proposed various treatment modalities for their management. With the increase in the number of reports evaluating the efficacy of various treatment modalities and new materials, the use of multiple decontamination methods to clean infected implant surfaces is recommended; moreover, the use of hard tissue laser and/or air abrasion techniques may prove advantageous in the future. Limited evidence supports additional effects on clinical improvement in antimicrobial administration for treating peri-implantitis. Implantoplasty may be justified for decontaminating the implant surfaces in the supracrestal area. Surgical treatment is employed for advanced peri-implantitis, and appropriate surgical methods, such as resection therapy or combination therapy, should be selected based on bone defect configuration. This review presents recent clinical advances in debridement methods for contaminated implant surfaces and regenerative materials for treating peri-implant bone defects. It also proposes a new flowchart to guide the treatment decisions for peri-implant disease.

2.
JACC Case Rep ; 11: 101793, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37077438

RESUMO

We present 2 cases that both developed infective endocarditis and underwent mitral valve replacement. In addition to positive blood culture and echocardiographic findings, such as vegetation or mitral valve perforation, the 16S ribosomal RNA gene amplicon sequence approach used was helpful for disease diagnosis. (Level of Difficulty: Intermediate.).

4.
mSystems ; 6(6): e0088621, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34698525

RESUMO

Periodontal disease is an inflammatory condition caused by polymicrobial infection. The inflammation is initiated at the gingiva (gingivitis) and then extends to the alveolar bone, leading to tooth loss (periodontitis). Previous studies have shown differences in bacterial composition between periodontal healthy and diseased sites. However, bacterial metabolic activities during the health-to-periodontitis microbiome shift are still inadequately understood. This study was performed to investigate the bacterial characteristics of healthy, gingivitis, and periodontitis statuses through metatranscriptomic analysis. Subgingival plaque samples of healthy, gingivitis, and periodontitis sites in the same oral cavity were collected from 21 patients. Bacterial compositions were then determined based on 16S rRNA reads; taxonomic and functional profiles derived from genes based on mRNA reads were estimated. The results showed clear differences in bacterial compositions and functional profiles between healthy and periodontitis sites. Co-occurrence networks were constructed for each group by connecting two bacterial species if their mRNA abundances were positively correlated. The clustering coefficient values were 0.536 for healthy, 0.600 for gingivitis, and 0.371 for periodontitis sites; thus, network complexity increased during gingivitis development, whereas it decreased during progression to periodontitis. Taxa, including Eubacterium nodatum, Eubacterium saphenum, Filifactor alocis, and Fretibacterium fastidiosum, showed greater transcriptional activities than those of red complex bacteria, in conjunction with disease progression. These taxa were associated with periodontal disease progression, and the health-to-periodontitis microbiome shift was accompanied by alterations in bacterial network structure and complexity. IMPORTANCE The characteristics of the periodontal microbiome influence clinical periodontal status. Gingivitis involves reversible gingival inflammation without alveolar bone resorption. In contrast, periodontitis is an irreversible disease characterized by inflammatory destruction in both soft and hard tissues. An imbalance of the microbiome is present in both gingivitis and periodontitis. However, differences in microbiomes and their functional activities in the healthy, gingivitis, and periodontitis statuses are still inadequately understood. Furthermore, some inflamed gingival statuses do not consistently cause attachment loss. In this study, metatranscriptomic analyses were used to investigate the specific bacterial composition and gene expression patterns of the microbiomes of the healthy, gingivitis, and periodontitis statuses. In addition, co-occurrence network analysis revealed that the gingivitis site included features of networks observed in both the healthy and periodontitis sites. These results provide transcriptomic evidence to support gingivitis as an intermediate state between the healthy and periodontitis statuses.

5.
Front Cell Infect Microbiol ; 11: 723821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616690

RESUMO

Ancient dental calculus, formed from dental plaque, is a rich source of ancient DNA and can provide information regarding the food and oral microbiology at that time. Genomic analysis of dental calculus from Neanderthals has revealed the difference in bacterial composition of oral microbiome between Neanderthals and modern humans. There are few reports investigating whether the pathogenic bacteria of periodontitis, a polymicrobial disease induced in response to the accumulation of dental plaque, were different between ancient and modern humans. This study aimed to compare the bacterial composition of the oral microbiome in ancient and modern human samples and to investigate whether lifestyle differences depending on the era have altered the bacterial composition of the oral microbiome and the causative bacteria of periodontitis. Additionally, we introduce a novel diagnostic approach for periodontitis in ancient skeletons using micro-computed tomography. Ancient 16S rDNA sequences were obtained from 12 samples at the Unko-in site (18th-19th century) of the Edo era (1603-1867), a characteristic period in Japan when immigrants were not accepted. Furthermore, modern 16S rDNA data from 53 samples were obtained from a database to compare the modern and ancient microbiome. The microbial co-occurrence network was analyzed based on 16S rDNA read abundance. Eubacterium species, Mollicutes species, and Treponema socranskii were the core species in the Edo co-occurrence network. The co-occurrence relationship between Actinomyces oricola and Eggerthella lenta appeared to have played a key role in causing periodontitis in the Edo era. However, Porphyromonas gingivalis, Fusobacterium nucleatum subsp. vincentii, and Prevotella pleuritidis were the core and highly abundant species in the co-occurrence network of modern samples. These results suggest the possibility of differences in the pathogens causing periodontitis during different eras in history.


Assuntos
Bactérias/classificação , Periodontite , Actinobacteria , Actinomyces , Fusobacterium , História do Século XVII , História do Século XVIII , História do Século XIX , Humanos , Japão , Periodontite/diagnóstico , Periodontite/história , Periodontite/microbiologia , Porphyromonas gingivalis , Prevotella , Treponema , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA