Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 15: 1345410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633406

RESUMO

Background: Alcohol use disorder (AUD) is a complex condition associated with adverse health consequences that affect millions of individuals worldwide. Epigenetic modifications, including DNA methylation (5 mC), have been associated with AUD and other alcohol-related traits. Epigenome-wide association studies (EWAS) have identified differentially methylated genes associated with AUD in human peripheral and brain tissue. More recently, epigenetic studies of AUD have also evaluated DNA hydroxymethylation (5 hmC) in the human brain. However, most of the epigenetic work in postmortem brain tissue has examined bulk tissue. In this study, we investigated neuronal-specific 5 mC and 5 hmC alterations at CpG sites associated with AUD in the human orbitofrontal cortex (OFC). Methods: Neuronal nuclei from the OFC were evaluated in 34 human postmortem brain samples (10 AUD, 24 non-AUD). Reduced representation oxidative bisulfite sequencing was used to assess 5 mC and 5 hmC at the genome-wide level. Differential 5 mC and 5 hmC were evaluated using the methylKit R package and significance was set at false discovery rate < 0.05 and differential methylation > 2. Functional enrichment analyses were performed, and gene-level convergence was evaluated in an independent dataset that assessed 5 mC and 5 hmC of AUD in bulk cortical tissue. Results: We identified 417 5 mC and 363 5hmC significant differential CpG sites associated with AUD, with 59% in gene promoters. Some of the identified genes have been previously implicated in alcohol consumption, including SYK, DNMT3A for 5 mC, GAD1, DLX1, DLX2, for 5 hmC and GATA4 in both. Convergence with a previous AUD 5 mC and 5 hmC study was observed for 28 genes. We also identified 5 and 35 differential regions for 5 mC and 5 hmC, respectively. Lastly, GWAS enrichment analysis showed an association with AUD for differential 5 mC genes. Discussion: This study reveals neuronal-specific methylome and hydroxymethylome dysregulation associated with AUD, identifying both previously reported and potentially novel gene associations with AUD. Our findings provide new insights into the epigenomic dysregulation of AUD in the human brain.

2.
PLoS Comput Biol ; 19(12): e1011679, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38127831

RESUMO

The article presents a framework for a Bioinformatics competition that focuses on 4 key aspects: structure, model, overview, and perspectives. Structure represents the organizational framework employed to coordinate the main tasks involved in the competition. Model showcases the competition design, which encompasses 3 phases. Overview presents our case study, the League of Brazilian Bioinformatics (LBB) 2nd Edition. Finally, the section on perspectives provides a brief discussion of the LBB 2nd Edition, along with insights and feedback from participants. LBB is a biannual team competition launched in 2019 to promote the ongoing training of human resources in Bioinformatics and Computational Biology in Brazil. LBB aims to stimulate ongoing training in Bioinformatics by encouraging participation in competitions, promoting the organization of future Bioinformatics competitions, and fostering the integration of the Bioinformatics and Computational Biology community in the country, as well as collaboration among participants. The LBB 2nd Edition was launched in 2021 and featured 251 competitors forming 91 teams. Knowledge competitions promote learning, collaboration, and innovation, which are crucial for advancing scientific knowledge and solving real-world problems. In summary, this article serves as a valuable resource for individuals and organizations interested in developing knowledge competitions, offering a model based on our experience with LBB to benefit all levels of Bioinformatics trainees.


Assuntos
Biologia Computacional , Humanos , Brasil , Biologia Computacional/educação
3.
medRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38105948

RESUMO

Alcohol use disorder (AUD) is a complex condition associated with adverse health consequences that affect millions of individuals worldwide. Epigenetic modifications, including DNA methylation (5mC), have been associated with AUD and other alcohol-related traits. Epigenome-wide association studies (EWAS) have identified differentially methylated genes associated with AUD in human peripheral and brain tissue. More recently, epigenetic studies of AUD have also evaluated DNA hydroxymethylation (5hmC) in the human brain. However, most of the epigenetic work in postmortem brain tissue has examined bulk tissue. In this study, we investigated neuronal-specific 5mC and 5hmC alterations at CpG sites associated with AUD in the human orbitofrontal cortex (OFC). Neuronal nuclei from the OFC were evaluated in 34 human postmortem brain samples (10 AUD, 24 non-AUD). Reduced representation oxidative bisulfite sequencing was used to assess 5mC and 5hmC at the genome-wide level. Differential 5mC and 5hmC were evaluated using the methylKit R package and significance was set at false discovery rate <0.05 and differential methylation >2. Functional enrichment analyses were performed and replication was evaluated replication in an independent dataset that assessed 5mC and 5hmC of AUD in bulk cortical tissue. We identified 417 5mC and 363 5hmC genome-wide significant differential CpG sites associated with AUD, with 59% in gene promoters. We also identified genes previously implicated in alcohol consumption, such as SYK, CHRM2, DNMT3A, and GATA4, for 5mC and GATA4, and GAD1, GATA4, DLX1 for 5hmC. Replication was observed for 28 CpG sites from a previous AUD 5mC and 5hmC study, including FOXP1. Lastly, GWAS enrichment analysis showed an association with AUD for differential 5mC genes. This study reveals neuronal-specific methylome and hydroxymethylome dysregulation associated with AUD. We replicated previous findings and identified novel associations with AUD for both 5mC and 5hmC marks within the OFC. Our findings provide new insights into the epigenomic dysregulation of AUD in the human brain.

4.
Nat Commun ; 14(1): 4544, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507366

RESUMO

Opioid use disorder (OUD) is influenced by genetic and environmental factors. While recent research suggests epigenetic disturbances in OUD, this is mostly limited to DNA methylation (5mC). DNA hydroxymethylation (5hmC) has been widely understudied. We conducted a multi-omics profiling of OUD in a male cohort, integrating neuronal-specific 5mC and 5hmC as well as gene expression profiles from human postmortem orbitofrontal cortex (OUD = 12; non-OUD = 26). Single locus methylomic analysis and co-methylation analysis showed a higher number of OUD-associated genes and gene networks for 5hmC compared to 5mC; these were enriched for GPCR, Wnt, neurogenesis, and opioid signaling. 5hmC marks also showed a higher correlation with gene expression patterns and enriched for GWAS of psychiatric traits. Drug interaction analysis revealed interactions with opioid-related drugs, some used as OUD treatments. Our multi-omics findings suggest an important role of 5hmC and reveal loci epigenetically dysregulated in OFC neurons of individuals with OUD.


Assuntos
Epigenoma , Transtornos Relacionados ao Uso de Opioides , Humanos , Masculino , Analgésicos Opioides , 5-Metilcitosina/metabolismo , Metilação de DNA/genética , Córtex Pré-Frontal/metabolismo , Neurônios/metabolismo , Transtornos Relacionados ao Uso de Opioides/genética , Epigênese Genética
5.
medRxiv ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37163025

RESUMO

Aging is a complex process with interindividual variability, which can be measured by aging biological clocks. Aging clocks are machine-learning algorithms guided by biological information and associated with mortality risk and a wide range of health outcomes. One of these aging clocks are transcriptomic clocks, which uses gene expression data to predict biological age; however, their functional role is unknown. Here, we profiled two transcriptomic clocks (RNAAgeCalc and knowledge-based deep neural network clock) in a large dataset of human postmortem prefrontal cortex (PFC) samples. We identified that deep-learning transcriptomic clock outperforms RNAAgeCalc to predict transcriptomic age in the human PFC. We identified associations of transcriptomic clocks with psychiatric-related traits. Further, we applied system biology algorithms to identify common gene networks among both clocks and performed pathways enrichment analyses to assess its functionality and prioritize genes involved in the aging processes. Identified gene networks showed enrichment for diseases of signal transduction by growth factor receptors and second messenger pathways. We also observed enrichment of genome-wide signals of mental and physical health outcomes and identified genes previously associated with human brain aging. Our findings suggest a link between transcriptomic aging and health disorders, including psychiatric traits. Further, it reveals functional genes within the human PFC that may play an important role in aging and health risk.

7.
Biomedicines ; 10(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35625844

RESUMO

Posttraumatic stress disorder (PTSD) is a chronic and multifactorial disorder with a prevalence ranging between 6-10% in the general population and ~35% in individuals with high lifetime trauma exposure. Growing evidence indicates that the immune system may contribute to the etiology of PTSD, suggesting the inflammatory dysregulation as a hallmark feature of PTSD. However, the potential interplay between the central and peripheral immune system, as well as the biological mechanisms underlying this dysregulation remain poorly understood. The activation of the HPA axis after trauma exposure and the subsequent activation of the inflammatory system mediated by glucocorticoids is the most common mechanism that orchestrates an exacerbated immunological response in PTSD. Recent high-throughput analyses in peripheral and brain tissue from both humans with and animal models of PTSD have found that changes in gene regulation via epigenetic alterations may participate in the impaired inflammatory signaling in PTSD. The goal of this review is to assess the role of the inflammatory system in PTSD across tissue and species, with a particular focus on the genomics, transcriptomics, epigenomics, and proteomics domains. We conducted an integrative multi-omics approach identifying TNF (Tumor Necrosis Factor) signaling, interleukins, chemokines, Toll-like receptors and glucocorticoids among the common dysregulated pathways in both central and peripheral immune systems in PTSD and propose potential novel drug targets for PTSD treatment.

8.
Gene ; 828: 146476, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35413393

RESUMO

Energy cane is a dedicated crop to high biomass production and selected during Saccharum breeding programs to fit specific industrial needs for 2G bioethanol production. Internode elongation is one of the most important characteristics in Saccharum hybrids due to its relationship with crop yield. In this study, we selected the third internode elongation of the energy cane. To characterize this process, we divided the internode into five sections and performed a detailed transcriptome analysis (RNA-Seq) and cell wall characterization. The histological analyses revealed a remarkable gradient that spans from cell division and protoxylem lignification to the internode maturation and complete vascular bundle lignification. RNA-Seq analysis revealed more than 11,000 differentially expressed genes between the sections internal. Gene ontology analyzes showed enriched categories in each section, as well as the most expressed genes in each section, presented different biological processes. We found that the internode elongation and division zones have a large number of unique genes. Evaluated the specific profile of genes related to primary and secondary cell wall formation, cellulose synthesis, hemicellulose, lignin, and growth-related genes. For each section these genes presented different profiles along the internode in elongation in energy cane. The results of this study provide an overview of the regulation of gene expression of an internode elongation in energy cane. Gene expression analysis revealed promising candidates for transcriptional regulation of energy cane lignification and evidence key genes for the regulation of internode development, which can serve as a basis for understanding the molecular regulatory mechanisms that support the growth and development of plants in the Saccahrum complex.


Assuntos
Saccharum , Biomassa , Bengala , Regulação da Expressão Gênica de Plantas , Lignina , Melhoramento Vegetal , Saccharum/genética , Saccharum/metabolismo
9.
Front Psychiatry ; 13: 1078894, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36745154

RESUMO

Introduction: DNA methylation (DNAm), an epigenetic mechanism, has been associated with opioid use disorder (OUD) in preclinical and human studies. However, most of the studies have focused on DNAm at CpG sites. DNAm at non-CpG sites (mCpHs, where H indicates A, T, or C) has been recently shown to have a role in gene regulation and to be highly abundant in neurons. However, its role in OUD is unknown. This work aims to evaluate mCpHs in the human postmortem orbital frontal cortex (OFC) in the context of OUD. Methods: A total of 38 Postmortem OFC samples were obtained from the VA Brain Bank (OUD = 12; Control = 26). mCpHs were assessed using reduced representation oxidative bisulfite sequencing in neuronal nuclei. Differential analysis was performed using the "methylkit" R package. Age, ancestry, postmortem interval, PTSD, and smoking status were included as covariates. Significant mCpHs were set at q-value < 0.05. Gene Ontology (GO) and KEGG enrichment analyses were performed for the annotated genes of all differential mCpH loci using String, ShinyGO, and amiGO software. Further, all annotated genes were analyzed using the Drug gene interaction database (DGIdb). Results: A total of 2,352 differentially methylated genome-wide significant mCpHs were identified in OUD, mapping to 2,081 genes. GO analysis of genes with differential mCpH loci showed enrichment for nervous system development (p-value = 2.32E-19). KEGG enrichment analysis identified axon guidance and glutamatergic synapse (FDR 9E-4-2.1E-2). Drug interaction analysis found 3,420 interactions between the annotated genes and drugs, identifying interactions with 15 opioid-related drugs, including lofexidine and tizanidine, both previously used for the treatment of OUD-related symptoms. Conclusion: Our findings suggest a role of mCpHs for OUD in cortical neurons and reveal important biological pathways and drug targets associated with the disorder.

10.
BMC Genom Data ; 22(1): 30, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-34482817

RESUMO

BACKGROUND: Preterm birth (< 37 weeks' gestation) is a common outcome of pregnancy that has been associated with increased risk of cardiovascular disease for women later in life. Little is known about the physiologic mechanisms underlying this risk. To date, no studies have evaluated if differences in DNA methylation (DNAm) among women who experience preterm birth are short-term or if they persist and are associated with subsequent cardiovascular sequelae or other health disorders. The purpose of this study was to examine long-term epigenetic effects of preterm birth in African American mothers (n = 182) from the InterGEN Study (2014-2019). In this study, we determine if differences in DNAm exist between women who reported a preterm birth in the last 3-5 years compared to those who had full-term births by using two different approaches: epigenome-wide association study (EWAS) and genome-wide co-methylation analyses. RESULTS: Though no significant CpG sites were identified using the EWAS approach, we did identify significant modules of co-methylation associated with preterm birth. Co-methylation analyses showed correlations with preterm birth in gene ontology and KEGG pathways. Functional annotation analysis revealed enrichment for pathways related to central nervous system and sensory perception. No association was observed between DNAm age and preterm birth, though larger samples are needed to confirm this further. CONCLUSIONS: We identified differentially methylated gene networks associated with preterm birth in African American women 3-5 years after birth, including pathways related to neurogenesis and sensory processing. More research is needed to understand better these associations and replicate them in an independent cohort. Further study should be done in this area to elucidate mechanisms linking preterm birth and later epigenomic changes that may contribute to the development of health disorders and maternal mood and well-being.


Assuntos
Negro ou Afro-Americano/genética , Metilação de DNA , Nascimento Prematuro/genética , Pré-Escolar , Estudos de Coortes , Epigênese Genética , Epigenômica , Feminino , Humanos , Lactente , Recém-Nascido , Gravidez
11.
PLoS One ; 14(9): e0222329, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513639

RESUMO

Methylation patterns established and maintained at CpG sites may be altered by single nucleotide polymorphisms (SNPs) within these sites and may affect the regulation of nearby genes. Our aims were to: 1) identify and generate a database of SNPs potentially subject to epigenetic control by DNA methylation via their involvement in creating, removing or displacing CpG sites (meSNPs), and; 2) investigate the association of these meSNPs with CpG islands (CGIs), and with methylation profiles of DNA extracted from tissues from cattle with divergent feed efficiencies detected using MIRA-Seq. Using the variant annotation for 56,969,697 SNPs identified in Run5 of the 1000 Bull Genomes Project and the UMD3.1.1 bovine reference genome sequence assembly, we identified and classified 12,836,763 meSNPs according to the nature of variation created at CpGs. The majority of the meSNPs were located in intergenic regions (68%) or introns (26.3%). We found an enrichment (p<0.01) of meSNPs located in CGIs relative to the genome as a whole, and also in differentially methylated sequences in tissues from animals divergent for feed efficiency. Seven meSNPs, located in differentially methylated regions, were fixed for methylation site creating (MSC) or destroying (MSD) alleles in the differentially methylated genomic sequences of animals differing in feed efficiency. These meSNPs may be mechanistically responsible for creating or deleting methylation targets responsible for the differential expression of genes underlying differences in feed efficiency. Our methyl SNP database (dbmeSNP) is useful for identifying potentially functional "epigenetic polymorphisms" underlying variation in bovine phenotypes.


Assuntos
Bovinos/genética , Ilhas de CpG/genética , Epigênese Genética/genética , Animais , DNA/genética , Metilação de DNA/genética , Bases de Dados Genéticas , Epigenômica/métodos , Genoma/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos
12.
PLoS One ; 13(12): e0208316, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30521599

RESUMO

ß-thalassemia is a worldwide distributed monogenic red cell disorder, characterized by an absent or reduced beta globin chain synthesis. The unbalance of alpha-gamma chain and the presence of pathological free iron promote severe oxidative damage, playing crucial a role in erythrocyte hemolysis, exacerbating ineffective erythropoiesis and decreasing the lifespan of red blood cells (RBC). Catalase, glutathione peroxidase and peroxiredoxins act together to protect RBCs from hydrogen peroxide insult. Among them, peroxiredoxins stand out for their overall abundance and reactivity. In RBCs, Prdx2 is the third most abundant protein, although Prdxs 1 and 6 isoforms are also found in lower amounts. Despite the importance of these enzymes, Prdx1 and Prdx2 may have their peroxidase activity inactivated by hyperoxidation at high hydroperoxide concentrations, which also promotes the molecular chaperone activity of these proteins. Some studies have demonstrated the importance of Prdx1 and Prdx2 for the development and maintenance of erythrocytes in hemolytic anemia. Now, we performed a global analysis comparatively evaluating the expression profile of several antioxidant enzymes and their physiological reducing agents in patients with beta thalassemia intermedia (BTI) and healthy individuals. Furthermore, increased levels of ROS were observed not only in RBC, but also in neutrophils and mononuclear cells of BTI patients. The level of transcripts and the protein content of Prx1 were increased in reticulocyte and RBCs of BTI patients and the protein content was also found to be higher when compared to beta thalassemia major (BTM), suggesting that this peroxidase could cooperate with Prx2 in the removal of H2O2. Furthermore, Prdx2 production is highly increased in RBCs of BTM patients that present high amounts of hyperoxidized species. A significant increase in the content of Trx1, Srx1 and Sod1 in RBCs of BTI patients suggested protective roles for these enzymes in BTI patients. Finally, the upregulation of Nrf2 and Keap1 transcription factors found in BTI patients may be involved in the regulation of the antioxidant enzymes analyzed in this work.


Assuntos
Células Eritroides/metabolismo , Peroxirredoxinas/metabolismo , Talassemia beta/metabolismo , Talassemia beta/patologia , Adolescente , Adulto , Western Blotting , Criança , Pré-Escolar , Eritrócitos/citologia , Eritrócitos/metabolismo , Feminino , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Neutrófilos/citologia , Neutrófilos/metabolismo , Oxirredução , Peroxirredoxinas/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA