Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2407090, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231338

RESUMO

Metal-free, luminescent, carbogenic nanomaterials (LCNMs) constitute a novel class of optical materials with low environmental impact. LCNMs, e.g., carbon dots (CDs), graphitic carbon nitride (g-C3N4), and carbonized polymer microspheres (CPM) show strong blue/cyan emissions, but rather weak yellow/red emission. This has been a serious drawback in applying them to light-emitting and bio-imaging applications. Here, by integrating single-component LCNMs in photonic microcavities, the study spectroscopically engineers the coupling between photonic modes in these microcavities and optical transitions to "reconfigure" the emission spectra of these luminescent materials. Resonant photons are confined in the microcavity, which allows selective re-excitation of phosphors to effectively emit down-converted photons. The down-converted photons re-excite the phosphors and are multiply recycled, leading to enhanced yellow/red emissions and resulting in white-light emission (WLE). Furthermore, by adjusting photonic stop bands of microcavity components, color adaptable (cool, pure, and warm) WLE is flexibly generated, which precisely follows the black-body Planckian locus in the chromaticity diagram. The proposed approach offers practical low-cost chromaticity-adjustable WLE from single-component, luminescent materials without any chemical or surface modification, or elaborate machinery and processing, paving the way for practical WLE devices.

2.
Adv Sci (Weinh) ; 11(30): e2400693, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38867440

RESUMO

Colloidal carbon dots (CDs) have garnered much attention as metal-free photoluminescent nanomaterials, yet creation of solid-state fluorescent (SSF) materials emitting in the deep red (DR) to near-infrared (NIR) range poses a significant challenge with practical implications. To address this challenge and to engineer photonic functionalities, a micro-resonator architecture is developed using carbonized polymer microspheres (CPMs), evolved from conventional colloidal nanodots. Gram-scale production of CPMs utilizes controlled microscopic phase separation facilitated by natural peptide cross-linking during hydrothermal processing. The resulting microstructure effectively suppresses aggregation-induced quenching (AIQ), enabling strong solid-state light emission. Both experimental and theoretical analysis support a role for extended π-conjugated polycyclic aromatic hydrocarbons (PAHs) trapped within these microstructures, which exhibit a progressive red shift in light absorption/emission toward the NIR range. Moreover, the highly spherical shape of CPMs endows them with innate photonic functionalities in combination with their intrinsic CD-based attributes. Harnessing their excitation wavelength-dependent photoluminescent (PL) property, a single CPM exhibits whispering-gallery modes (WGMs) that are emission-tunable from the DR to the NIR. This type of newly developed microresonator can serve as, for example, unclonable anti-counterfeiting labels. This innovative cross-cutting approach, combining photonics and chemistry, offers robust, bottom-up, built-in photonic functionality with diverse NIR applications.

3.
ACS Appl Mater Interfaces ; 16(17): 22312-22325, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651800

RESUMO

Light-element-based fluorescent materials, colloidal graphene quantum dots, and carbon dots (CDs) have sparked an immense amount of scientific interest in the past decade. However, a significant challenge in practical applications has emerged concerning the development of solid-state fluorescence (SSF) materials. This study addresses this knowledge gap by exploring the unexplored photonic facets of C-based solid-state microphotonic emitters. The proposed synthesis approach focuses on carbonized polymer microspheres (CPMs) instead of conventional nanodots. These microspheres exhibit remarkable SSF spanning the entire visible spectrum from blue to red. The highly spherical shape of CPMs imparts built-in photonic properties in addition to its intrinsic CD-based attributes. Leveraging their excitation-dependent photoluminescence property, these microspheres exhibit amplified spontaneous emission, assisted by the whispering gallery mode resonance across the visible spectral region. Remarkably, unlike conventional semiconductor quantum dots or dye-doped microresonators, this single microstructure showcases adaptable resonant emission without structural/chemical modifications. This distinctive attribute enables a plethora of applications, including microcavity-assisted energy transfer for white light emission, highly sensitive chemical sensing, and secure encrypted anticounterfeiting measures. This interdisciplinary approach, integrating photonics and chemistry, provides a robust solution for light-element-based SSF with inherent photonic functionality and wide-ranging applications.

4.
Langmuir ; 38(47): 14422-14429, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36383433

RESUMO

In general, randomly oriented ice crystallites are formed by heating amorphous solid water (ASW) films at ∼160 K via homogeneous nucleation. Here, we demonstrate that monolayers of methanol and 1-propanol additives incorporated in the multilayer ASW film lead to heterogeneous nucleation at the substrate interface of Pt(111), as evidenced by the occurrence of epitaxial ice growth. The mobility of water in direct contact with the Pt(111) substrate is decreased relative to that in the bulk, but it can be increased via interactions with hydrophobic moieties of alcohols that are segregated to the interfacial region. As a result, heterogeneous nucleation occurs at ca. 160 K along with homogeneous nucleation in the film interior. However, the template effect is quenched when the alcohols are in direct contact with the substrate. The methanol adspecies deposited onto the ASW film surface induces heterogeneous nucleation at a temperature as low as 145 K, but the 1-propanol adspecies has no such an effect. Their different ability of heterogeneous nucleation at the free ASW film surface, as well as their uptake behaviors in the near surface region, is associated with the hydrophobic hydration of the alcohols resulting from different lengths of the aliphatic moiety.

5.
Opt Express ; 30(21): 38630-38642, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258423

RESUMO

We report the fabrication of a mid-infrared device using LaB6 - Al2O3 - LaB6 trilayers, with an array of LaB6 strips as the top layer. Uniaxially oriented lanthanum hexaboride (LaB6) films self-organized in a (100) orientation were adopted together with a lithographic process using laser direct writing followed by reactive ion etching. The fabricated infrared absorbers based on our electromagnetic design exhibited excellent resonant absorption and flexible tunability by changing the periodicity and width of the top LaB6 strips. We examined the performance of epitaxial and sputtered LaB6 films by fabricating two different types of absorbers using sputtered LaB6(100) and epitaxial LaB6(100) films for the bottom mirror layers. Owing to a difference in crystallinity, the latter exhibited a lower background in the absorption spectra as well as in the thermal emission spectra, indicating its good spectral selectivity.

6.
Phys Chem Chem Phys ; 24(27): 16900-16907, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35788231

RESUMO

It is considered that hydrophobic solutes dissolve in water via the formation of icelike cages in the first hydration shell. However, this conventional picture is currently under debate. We have investigated how hydrophobic species, such as D2, Ne, Ar, Xe, CH4, and C3H8, interact with water in composite films of amorphous solid water (ASW) based on temperature programmed desorption (TPD). The D2 and Ne species tend to be incorporated in ASW without being caged, whereas two distinct peaks assignable to the caged species are identifiable for the other solutes examined here. The low-temperature peak is observed preferentially for Ar and CH4 prior to crystallization. The hydrophobes are thought to be encapsulated in porous ASW films via reorganization of the hydrogen bond network up to 100 K; most of them are released in a liquidlike phase that occurs immediately before crystallization at ca. 160 K. The nature of hydrophobic hydration at cryogenic temperature appears to differ from that in normal water at room temperature because the former resembles crystalline ices in the local hydrogen-bond structure rather than the latter. No ordered structures assignable to clathrate hydrates were identified before and after crystallization.

7.
Nat Commun ; 13(1): 4279, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879336

RESUMO

In transition metal dichalcogenides, valley depolarization through intervalley carrier scattering by zone-edge phonons is often unavoidable. Although valley depolarization processes related to various acoustic phonons have been suggested, their optical verification is still vague due to nearly degenerate phonon frequencies on acoustic phonon branches at zone-edge momentums. Here we report an unambiguous phonon momentum determination of the longitudinal acoustic (LA) phonons at the K point, which are responsible for the ultrafast valley depolarization in monolayer MoSe2. Using sub-10-fs-resolution pump-probe spectroscopy, we observed coherent phonons signals at both even and odd-orders of zone-edge LA mode involved in intervalley carrier scattering process. Our phonon-symmetry analysis and first-principles calculations reveal that only the LA phonon at the K point, as opposed to the M point, can produce experimental odd-order LA phonon signals from its nonlinear optical modulation. This work will provide momentum-resolved descriptions of phonon-carrier intervalley scattering processes in valleytronic materials.

8.
J Am Chem Soc ; 143(31): 12145-12153, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34324341

RESUMO

Methanol steam reforming (MSR) is a promising reaction that enables efficient production and safe transportation of hydrogen, but it requires a relatively high temperature to achieve high activity, leading to large energy consumption. Here, we report a plasmonic ZnCu alloy catalyst, consisting of plasmonic Cu nanoparticles with surface-deposited Zn atoms, for efficient solar-driven MSR without additional thermal energy input. Experimental results and theoretical calculations suggest that Zn atoms act not only as the catalytic sites for water reduction with lower activation energy but also as the charge transfer channel, pumping hot electrons into water molecules and subsequently resulting in the formation of electron-deficient Cu for methanol activation. These merits together with photothermal heating render the optimal ZnCu catalyst a high H2 production rate of 328 mmol gcatalyst-1 h-1 with a solar energy conversion efficiency of 1.2% under 7.9 Suns irradiation, far exceeding the reported conventional photocatalytic and thermocatalytic MSR. This work provides a potential strategy for efficient solar-driven H2 production and various other energy-demanding industrial reactions through designing alloy catalysts.

9.
Sci Technol Adv Mater ; 22(1): 441-448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248419

RESUMO

For any thermoelectric effects to be achieved, a thermoelectric material must have hot and cold sides. Typically, the hot side can be easily obtained by excess heat. However, the passive cooling method is often limited to convective heat transfer to the surroundings. Since thermoelectric voltage is proportional to the temperature difference between the hot and cold sides, efficient passive cooling to increase the temperature gradient is of critical importance. Here, we report simultaneous harvesting of radiative cooling at the top and solar heating at the bottom to enhance the temperature gradient for a transverse thermoelectric effect which generates thermoelectric voltage perpendicular to the temperature gradient. We demonstrate this concept by using the spin Seebeck effect and confirm that the spin Seebeck device shows the highest thermoelectric voltage when both radiative cooling and solar heating are utilized. Furthermore, the device generates thermoelectric voltage even at night through radiative cooling which enables continuous energy harvesting throughout a day. Planar geometry and scalable fabrication process are advantageous for energy harvesting applications.

10.
Sci Rep ; 11(1): 10954, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040067

RESUMO

Traditional hydropower generation is one of the most sustainable energy sources; however, the local environmental impact of hydroelectric dams and reservoirs is serious, and hydroelectric power requires high-cost turbines and generators. Because these installations utilize gravitational potential energy of massive volumes of falling water, this sort of hydropower generation is unsuitable for ubiquitous, small-scale energy production. Here, we report that wetting and evaporation of pure water from a tiny block of porous alumina generates electrical current in the direction of water transpiration. The current induced in microporous alumina is associated with mass transport of water accompanying ions that accumulate near the negatively charged surface of alumina pores. Without any pre-treatment or additives, once evaporation commences, a 3 × 3 cm2 piece of alumina can generate an open-circuit voltage as large as 0.27 V. The power generation scheme we propose here is simple, clean, and versatile, and it can be employed anywhere, as it utilizes only spontaneous capillary action of water and Coulombic interaction at the alumina-water interface, without requiring any input of heat or light.

11.
ACS Appl Mater Interfaces ; 12(50): 56562-56567, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33259198

RESUMO

Optically excited hot carriers from metallic nanostructures forming metal-semiconductor heterostructures are advantageous for enhancing photoelectric conversion in the sub-band gap photon energy regime. Plasmonic gold has been widely used for hot carrier excitation, but recent works have demonstrated that plasmonic transition-metal nitrides have higher efficiencies in injecting hot electrons to adjacent n-type semiconductors and are more cost-effective. To collect direct evidence of hot carrier excitation from nanostructures, imaging of hot carriers is essential. In this work, photoexcited Kelvin probe force microscopy (KPFM) is used to image hot carriers excited in transition-metal nitride nanostructures forming heterostructures with semiconductors. Among available transition-metal nitrides, we select zirconium nitride (ZrN) for this study. Additionally, both p-type and n-type titanium dioxides (TiO2) are selected to study the transport of hot holes and hot electrons. The KPFM results indicate that for ZrN and p-type TiO2 heterostructures, hot holes are injected into the p-type TiO2 across the Schottky contact. In the case of ZrN and n-type TiO2 heterostructures, hot electrons are injected into the n-type TiO2 across the ohmic contact. Because transition-metal nitrides are known to be more effective than gold at injecting hot carriers into adjacent semiconductors, unambiguously determining the mechanisms of hot carrier transportation of transition-metal nitrides using photoexcited KPFM will facilitate additional studies on hot carrier applications with transition-metal nitrides.

12.
Micromachines (Basel) ; 11(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858824

RESUMO

Infrared light radiates from almost all the matter on earth and its strategic use will be an important issue for the enhancement of human life and the sustainable development of modern industry [...].

13.
Micromachines (Basel) ; 11(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751953

RESUMO

While band gap and absorption coefficients are intrinsic properties of a material and determine its spectral range, response time is mainly controlled by the architecture of the device and electron/hole mobility. Further, 2D-layered materials such as transition metal dichalogenides (TMDCs) possess inherent and intriguing properties such as a layer-dependent band gap and are envisaged as alternative materials to replace conventional silicon (Si) and indium gallium arsenide (InGaAs) infrared photodetectors. The most researched 2D material is graphene with a response time between 50 and 100 ps and a responsivity of <10 mA/W across all wavelengths. Conventional Si photodiodes have a response time of about 50 ps with maximum responsivity of about 500 mA/W at 880 nm. Although the responsivity of TMDCs can reach beyond 104 A/W, response times fall short by 3-6 orders of magnitude compared to graphene, commercial Si, and InGaAs photodiodes. Slow response times limit their application in devices requiring high frequency. Here, we highlight some of the recent developments made with visible and near-infrared photodetectors based on two dimensional SnSe2 and MoS2 materials and their performance with the main emphasis on the role played by the mobility of the constituency semiconductors to response/recovery times associated with the hetero-structures.

14.
ACS Appl Mater Interfaces ; 12(28): 31327-31339, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32470288

RESUMO

The release of untreated industrial wastewater creates a hazardous impact on the environment. In this regard, the development of an environmentally friendly catalyst is of paramount importance. Here, we report a highly efficient and reusable core-shell TiN/SiO2/Cr-TiO2 (TSCT) photocatalyst that is composed of SiO2-cladded titanium nitride (TiN) nanoparticles (NPs) decorated with Cr-doped TiO2 NPs for the removal of organic contaminants from water. The TiN NPs serve as the main light absorber component with excellent visible-light absorption along with Cr-TiO2 NPs. The TSCT shows remarkable improvement in the photodecomposition of methylene blue (MB) over Cr-TiO2 and TiO2 NPs. An efficient structural design is proposed by adopting calcium alginate beads (P-Marimo beads) as a transparent scaffold for supporting our TSCT, which floats nature on the water surface and realizes easy handling as well as excellent reusability for multipurpose water purification. Surprisingly, our TSCT is found to keep its catalytic activity even after the illumination is turned off. Our proposed P-Marimo-encapsulated TSCT can be utilized as an excellent green photocatalyst with high photocatalytic performance, good recyclability, and easy handling.

15.
Micromachines (Basel) ; 11(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878232

RESUMO

Among conductive oxide materials, niobium doped titanium dioxide has recently emerged as a stimulating and promising contestant for numerous applications. With carrier concentration tunability, high thermal stability, mechanical and environmental robustness, this is a material-of-choice for infrared plasmonics, which can substitute indium tin oxide (ITO). In this report, to illustrate great advantages of this material, we describe successful fabrication and characterization of niobium doped titanium oxide nanoantenna arrays aiming at surface-enhanced infrared absorption spectroscopy. The niobium doped titanium oxide film was deposited with co-sputtering method. Then the nanopatterned arrays were prepared by electron beam lithography combined with plasma etching and oxygen plasma ashing processes. The relative transmittance of the nanostrip and nanodisk antenna arrays was evaluated with Fourier transform infrared spectroscopy. Polarization dependence of surface plasmon resonances on incident light was examined confirming good agreements with calculations. Simulated spectra also present red-shift as length, width or diameter of the nanostructures increase, as predicted by classical antenna theory.

16.
Adv Sci (Weinh) ; 6(20): 1900579, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31637158

RESUMO

Merging photonic structures and optoelectronic sensors into a single chip may yield a sensor-on-chip spectroscopic device that can measure the spectrum of matter. In this work, an on-chip concurrent multiwavelength infrared (IR) sensor, which consists of a set of narrowband wavelength-selective plasmonic perfect absorbers combined with pyroelectric sensors, where the response of each pyroelectric sensor is boosted only at the resonance of the nanostructured absorber, is proposed and realized. The proposed absorber, which is based on Wood's anomaly absorption from a 2D plasmonic square lattice, shows a narrowband polarization-independent resonance (quality factor - Q of 73) with a nearly perfect absorptivity as high as 0.99 at normal incidence. The fabricated quad-wavelength IR sensors exhibit four different narrowband spectral responses at normal incidence following the predesigned resonances in the mid-wavelength infrared region that corresponds to the atmospheric window. The device can be applied for practical spectroscopic applications such as nondispersive IR sensors, IR chemical imaging devices, pyrometers, and spectroscopic thermography imaging.

17.
Micromachines (Basel) ; 10(7)2019 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-31337078

RESUMO

On the search for the practical plasmonic materials beyond noble metals, aluminum has been emerging as a favorable candidate as it is abundant and offers the possibility of tailoring the plasmonic resonance spanning from ultra-violet to the infrared range. In this letter, in combination with the numerical electromagnetic simulations, we experimentally study the dark-field scattering spectral mapping of plasmonic resonance from the free-standing Al bowtie antenna arrays and correlate their strong nearfield enhancement with the sensing capability by means of surface-enhanced Raman spectroscopy. The spatial matching of plasmonic and Raman mapping puts another step to realize a very promising application of free-standing Al bowtie antennas for plasmonic sensing.

18.
Micromachines (Basel) ; 10(6)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234295

RESUMO

Spectrally selective detection is of crucial importance for diverse modern spectroscopic applications such as multi-wavelength pyrometry, non-dispersive infrared gas sensing, biomedical analysis, flame detection, and thermal imaging. This paper reports a quad-wavelength hybrid plasmonic-pyroelectric detector that exhibited spectrally selective infrared detection at four wavelengths-3.3, 3.7, 4.1, and 4.5 µm. The narrowband detection was achieved by coupling the incident infrared light to the resonant modes of the four different plasmonic perfect absorbers based on Al-disk-array placed on a Al2O3-Al bilayer. These absorbers were directly integrated on top of a zinc oxide thin film functioning as a pyroelectric transducer. The device was fabricated using micro-electromechanical system (MEMS) technology to optimize the spectral responsivity. The proposed detector operated at room temperature and exhibited a responsivity of approximately 100-140 mV/W with a full width at half maximum of about 0.9-1.2 µm. The wavelength tunability, high spectral resolution, compactness and robust MEMS-based platform of the hybrid device demonstrated a great advantage over conventional photodetectors with bandpass filters, and exhibited impressive possibilities for miniature multi-wavelength spectroscopic devices.

19.
Micromachines (Basel) ; 10(6)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234373

RESUMO

We propose and experimentally demonstrate a compact design for membrane-supported wavelength-selective infrared (IR) bolometers. The proposed bolometer device is composed of wavelength-selective absorbers functioning as the efficient spectroscopic IR light-to-heat transducers that make the amorphous silicon (a-Si) bolometers respond at the desired resonance wavelengths. The proposed devices with specific resonances are first numerically simulated to obtain the optimal geometrical parameters and then experimentally realized. The fabricated devices exhibit a wide resonance tunability in the mid-wavelength IR atmospheric window by changing the size of the resonator of the devices. The measured spectral response of the fabricated device wholly follows the pre-designed resonance, which obviously evidences that the concept of the proposed wavelength-selective IR bolometers is realizable. The results obtained in this work provide a new solution for on-chip MEMS-based wavelength-selective a-Si bolometers for practical applications in IR spectroscopic devices.

20.
Opt Express ; 27(12): A725-A737, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31252849

RESUMO

Ultra-narrowband perfect absorbers and emitters are proposed and realized by engineering multiple-beam interference in Gires-Tournois etalon with the presence of low metallic loss. The absorption mechanism and spectral characteristics of the Gires-Tournois resonators are numerically and experimentally investigated for three configurations: dielectric cavity on metal, metal-dielectric-metal resonator, and distributed Bragg reflector (DBR)-dielectric-metal resonator. Narrowband thermal emitters based on the metal-dielectric-metal cavity and (DBR)-dielectric-metal cavity are experimentally demonstrated with an emissivity of 0.8 and 0.82, and a quality factor of 21 and 85, respectively. A DBR-dielectric-metal resonator-based absorber is directly loaded onto a LiTaO 3 film for the first time to constitute an on-chip ultra-narrowband pyroelectric detector with an excellent quality factor of 151 at the absorption band of methane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA