RESUMO
Mitochondria-ER membrane contact sites (MERCS) represent a fundamental ultrastructural feature underlying unique biochemistry and physiology in eukaryotic cells. The ER protein PDZD8 is required for the formation of MERCS in many cell types, however, its tethering partner on the outer mitochondrial membrane (OMM) is currently unknown. Here we identified the OMM protein FKBP8 as the tethering partner of PDZD8 using a combination of unbiased proximity proteomics, CRISPR-Cas9 endogenous protein tagging, Cryo-Electron Microscopy (Cryo-EM) tomography, and correlative light-EM (CLEM). Single molecule tracking revealed highly dynamic diffusion properties of PDZD8 along the ER membrane with significant pauses and capture at MERCS. Overexpression of FKBP8 was sufficient to narrow the ER-OMM distance, whereas independent versus combined deletions of these two proteins demonstrated their interdependence for MERCS formation. Furthermore, PDZD8 enhances mitochondrial complexity in a FKBP8-dependent manner. Our results identify a novel ER-mitochondria tethering complex that regulates mitochondrial morphology in mammalian cells.
RESUMO
INTRODUCTION: The literature described that neural damage caused by ischemia definitely occurs in brain areas. However, few studies have shown real-time changes of extracellular monoamine levels at the time of transient ischemia. METHODS: We examined changes in the responses of dopamine (DA) and serotonin (5-HT) release in the nucleus accumbens (ACC) of rats treated with four-vessel occlusion (4VO) in experiment 1. In the second experiment, we investigated the selective neural vulnerabilities among the ACC, lateral hypothalamus (LH), and frontal cortex (FC) of rats treated with 4VO and four days of reperfusion. RESULTS: The extracellular levels of DA and 5-HT were remarkably increased 200- and 20-fold upon the 10-min clipping of both common carotid arteries in transient cerebral ischemia, respectively. Each increased monoamine release returned to the baseline levels immediately. The release of DA in the ACC and FC was significantly decreased in the rats treated with the coagulation of bilateral vertebral arteries (2VO), compared with that of sham-operated rats. K(+)-induced DA release in the ACC and FC of 4VO-treated rats was increased without alteration of DA content. DISCUSSION: Surviving dopaminergic neurons in the ACC and FC showed neural hyperfunction associated with the monoamine release, serotonergic neurons in particular these areas exhibiting functional resistance to the transient ischemic change. CONCLUSION: It is suggested that the remarkable extracellular release of DA and 5-HT was not the cause of the ischemic delayed neural degeneration in each brain area, and that the functions of neurotransmitter release involved remarkable resistance to the transient ischemia.
RESUMO
Among 249 patients with teratoma-associated encephalitis, 211 had N-methyl-D-aspartate receptor antibodies and 38 were negative for these antibodies. Whereas antibody-positive patients rarely developed prominent brainstem-cerebellar symptoms, 22 (58%) antibody-negative patients developed a brainstem-cerebellar syndrome, which in 45% occurred with opsoclonus. The median age of these patients was 28.5 years (range = 12-41), 91% were women, and 74% had full recovery after therapy and tumor resection. These findings uncover a novel phenotype of paraneoplastic opsoclonus that until recently was likely considered idiopathic or postinfectious. The triad of young age (teenager to young adult), systemic teratoma, and high response to treatment characterize this novel brainstem-cerebellar syndrome.