Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 399: 130609, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508283

RESUMO

The microalgal-based production of fucoxanthin has emerged as an imperative research endeavor due to its antioxidant, and anticancer properties. In this study, three brown marine microalgae, namely Skeletonema costatum, Chaetoceros gracilis, and Pavlova sp., were screened for fucoxanthin production. All strains displayed promising results, with Pavlova sp. exhibiting the highest fucoxanthin content (27.91 mg/g) and productivity (1.16 mg/L·day). Moreover, the influence of various cultivation parameters, such as culture media, salinity, sodium nitrate concentration, inoculum size, light intensity, and iron concentration, were investigated and optimized, resulting in a maximum fucoxanthin productivity of 7.89 mg/L·day. The investigation was further expanded to large-scale outdoor cultivation using 50 L tubular photobioreactors, illustrating the potential of Pavlova sp. and the cultivation process for future commercialization. The biomass and fucoxanthin productivity for the large-scale cultivation were 70.7 mg/L·day and 4.78 mg/L·day, respectively. Overall, the findings demonstrated considerable opportunities for fucoxanthin synthesis via microalgae cultivation and processing.


Assuntos
Haptófitas , Microalgas , Xantofilas , Luz , Fotobiorreatores , Biomassa
2.
Crit Rev Biotechnol ; : 1-22, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587012

RESUMO

Natural astaxanthin is synthesized by diverse organisms including: bacteria, fungi, microalgae, and plants involving complex cellular processes, which depend on numerous interrelated parameters. Nonetheless, existing knowledge regarding astaxanthin biosynthesis and the conditions influencing astaxanthin accumulation is fairly limited. Thus, manipulation of the growth conditions to achieve desired biomass and astaxanthin yields can be a complicated process requiring cost-intensive and time-consuming experiment-based research. As a potential solution, modeling and simulation of biological systems have recently emerged, allowing researchers to predict/estimate astaxanthin production dynamics in selected organisms. Moreover, mathematical modeling techniques would enable further optimization of astaxanthin synthesis in a shorter period of time, ultimately contributing to a notable reduction in production costs. Thus, the present review comprehensively discusses existing mathematical modeling techniques which simulate the bioaccumulation of astaxanthin in diverse organisms. Associated challenges, solutions, and future perspectives are critically analyzed and presented.

3.
Chemosphere ; 331: 138776, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37100247

RESUMO

Plastics have become an essential part of life. When it enters the environment, it migrates and breaks down to form smaller size fragments, which are called microplastics (MPs). Compared with plastics, MPs are detrimental to the environment and pose a severe threat to human health. Bioremediation is being recognized as the most environmentally friendly and cost-effective degradation technology for MPs, but knowledge about the biodegradation of MPs is limited. This review explores the various sources of MPs and their migration behavior in terrestrial and aquatic environments. Among the existing MPs removal technologies, biodegradation is considered to be the best removal strategy to alleviate MPs pollution. The biodegradation potential of MPs by bacteria, fungi and algae is discussed. Biodegradation mechanisms such as colonization, fragmentation, assimilation, and mineralization are presented. The effects of MPs characteristics, microbial activity, environmental factors and chemical reagents on biodegradation are analyzed. The susceptibility of microorganisms to MPs toxicity might lead to decreased degradation efficiency, which is also elaborated. The prospects and challenges of biodegradation technologies are discussed. Eliminating prospective bottlenecks is necessary to achieve large-scale bioremediation of MPs-polluted environment. This review provides a comprehensive summary of the biodegradability of MPs, which is crucial for the prudent management of plastic waste.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Biodegradação Ambiental , Estudos de Viabilidade , Estudos Prospectivos , Poluentes Químicos da Água/análise
4.
Bioresour Technol ; 376: 128817, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36868426

RESUMO

In this study, Aurantiochytrium sp. CJ6 was cultivated heterotrophically on a waste resource, sorghum distillery residue (SDR) hydrolysate without adding any nitrogen sources. Mild sulfuric acid treatment released sugars that supported the growth of CJ6. Optimal operating parameters (salinity, 2.5%; pH, 7.5; with light exposure) determined using batch cultivation attained biomass concentration and astaxanthin content of 3.72 g/L and 69.32 µg/g dry cell weight (DCW), respectively. Using continuous-feeding fed-batch (CF-FB) fermentation, the biomass concentration of CJ6 increased to 6.3 g/L with biomass productivity and sugar utilization rate of 0.286 mg/L/d and 1.26 g/L/d, respectively. Meanwhile, CJ6 obtained maximum astaxanthin content (93.9 µg/g DCW) and astaxanthin concentration (0.565 mg/L) after 20-day cultivation. Thus, the CF-FB fermentation strategy seems to have a high potential for the cultivation of thraustochytrids to produce the high-value product (astaxanthin) using SDR as the feedstock to achieve circular economy.


Assuntos
Sorghum , Estramenópilas , Fermentação , Xantofilas , Biomassa
5.
Bioresour Technol ; 370: 128538, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36581231

RESUMO

Alternative protein sources for the reduction/replacement of fish meal in aqua-feeds are in urgent demand. Microalgae are considered sustainable protein sources for aquaculture due to their high-quality proteins with a complete profile of essential amino acids. This study examined the heterotrophic production of proteins from Chlorella sorokiniana SU-9. Culture parameters for maximal biomass and protein production are as follows: glucose - 10 g/L glucose, sodium nitrate - 1.5 g/L, and iron - 46 µM iron in BG-11 medium. Under optimal conditions, biomass content, protein content and protein productivity of SU-9 reached 4.14 ± 0.20 g/L, 403 ± 33 mg/g and 382 ± 36 mg/L/d, respectively. The protein profile of Chlorella sorokiniana SU-9 is comparable to fishmeal and soybean meal. The essential amino acids arginine, lysine and cysteine, along with glutamine and glutamate, were high. The production cost of SU-9 can be significantly reduced under heterotrophic cultivation conditions, making it a potential protein substitute in aquafeed.


Assuntos
Chlorella , Microalgas , Animais , Chlorella/metabolismo , Glucose/metabolismo , Biomassa , Processos Heterotróficos , Microalgas/metabolismo , Aminoácidos Essenciais/metabolismo
6.
Chemosphere ; 311(Pt 2): 136977, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36309060

RESUMO

Antibiotic contamination could cause serious risks of ecotoxicity and resistance gene induction. Advanced oxidation processes (AOPs) such as Fenton, photocatalysis, activated persulfate, electrochemistry and other AOPs technologies have been proven effective in the degradation of high-risk, refractory organic pollutants such as antibiotics. However, due to the limited mineralization ability, a large number of degradation intermediates will be produced in the oxidation process. The residual or undiscovered ecological risks of degradation products are potential safety hazards and problems necessitating comprehensive studies. In-depth investigations especially on the full assessments of ecotoxicity and resistance genes induction capability of antibiotic degradation products are important issues in reducing the environmental problems of antibiotics. Therefore, this review presents an overview of the current knowledge on the efficiency of different AOPs systems in reducing antibiotics toxicity and antibiotic resistance.

7.
Micromachines (Basel) ; 13(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36557396

RESUMO

Ciprofloxacin (CIP) is a commonly used antibiotic for the treatment of infectious diseases in humans and as a prophylactic agent in the livestock industry, leading to the environmental discharge of significant amounts of CIP. CIP is stable in aquatic systems leading to its pseudo-persistence. Constant exposure to these antibiotics results in the generation of antibiotic-resistant pathogens and potential toxicity/hypersensitivity in humans. Therefore, it is necessary to develop a convenient, rapid, and cost-effective method for the monitoring of ciprofloxacin in environmental samples. Rhodamine-based fluorescent receptors have the limitation of aqueous solubility. Therefore, in order to overcome this drawback, we designed a novel fluorescent receptor based on a zirconium-based metal organic framework (MOF-808). The precursor, MOF-808, was synthesized and functionalized by using sodium citrate to obtain a receptor called C-MOF-808. The C-MOF-808 was structurally characterized by XRD and spectroscopic analyses. Thus, this synthesized receptor can be used for the fluorescent detection of CIP in aqueous media with a detection limit of 9.4 µM. The detection phenomena of the receptor were studied by absorption as well as fluorescent spectra. The binding behavior of CIP with the receptor was studied by FT-IR and 1H-NMR analyses, and a binding mechanism is proposed.

8.
Bioresour Technol ; 365: 128119, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36252751

RESUMO

This study aimed at developing an eco-friendly and effective treatment for swine wastewater (SWW) using a designer microalgae-bacteria consortium. A functional algal bacterial consortium was developed with SWW-derived bacteria and Chlorella sorokiniana AK-1. Light intensity (300 µmol/m2/s) and inoculum size (0.15 and 0.2 g/L for microalgae and bacteria) were optimized. Semi-batch operation treating 50 % SWW resulted in a COD, BOD, TN, and TP removal efficiency of 81.1 ± 0.9 %, 97.0 ± 0.7 %, 90.6 ± 1.6 % and 91.3 ± 1.1 %, respectively. A novel two-stage process with an initial bacterial start-up stage followed by microalgal inoculation was applied for attaining stable organic carbon removal, in addition to satisfactory TN and TP removal. Full strength SWW was treated with this strategy with COD, BOD, TN, and TP removal efficiencies of 72.1 %, 94.9 %, 88 %, and 94.6 %, respectively. The biomass consisted of 36 % carbohydrates, indicating a potential feedstock for biochar production. In addition, the effluent met the standards for effluent discharge in Taiwan.


Assuntos
Chlorella , Microalgas , Suínos , Animais , Águas Residuárias , Biomassa , Bactérias
9.
Chemosphere ; 309(Pt 2): 136694, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36206920

RESUMO

Lactic acid is an essential platform chemical with various applications in the chemicals, food, pharmaceutical, and cosmetic industries. Currently, the demand for lactic acid is driven by the role of lactic acid as the starting material for the production of bioplastic polylactide. Microbial fermentation for lactic acid production is favored due to the production of enantiomerically pure lactic acid required for polylactide synthesis, as opposed to the racemic mixture obtained via chemical synthesis. The utilization of first-generation feedstock for commercial lactic acid production is challenged by feedstock costs and sustainability issues. Macroalgae are photosynthetic benthic aquatic plants that contribute tremendously towards carbon capture with subsequent carbon-rich biomass production. Macroalgae are commercially cultivated to extract hydrocolloids, and recent studies have focused on applying biomass as a fermentation feedstock. This review provides comprehensive information on the design and development of sustainable and cost-effective, algae-based lactic acid production. The central carbon regulation in lactic acid bacteria and the metabolism of seaweed-derived sugars are described. An exhaustive compilation of lactic acid fermentation of macroalgae hydrolysates revealed that lactic acid bacteria can effectively ferment the mixture of sugars present in the hydrolysate with comparable yields. The environmental impacts and economic prospects of macroalgal lactic acid are analyzed. Valorization of the vast amounts of spent macroalgal biomass residue post hydrocolloid extraction in a biorefinery is a viable strategy for cost-effective lactic acid production.


Assuntos
Fermentação , Ácido Láctico , Alga Marinha , Biomassa , Carbono/metabolismo , Ácido Láctico/metabolismo , Alga Marinha/metabolismo , Açúcares/metabolismo
10.
Sci Total Environ ; 845: 157110, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787906

RESUMO

Sustainable environmental management is one of the important aspects of sustainable development goals. Increasing amounts of wastewaters (WW) from exponential economic growth is a major challenge, and conventional treatment methods entail a huge carbon footprint in terms of energy use and GHG emissions. Microalgae-based WW treatment is a potential candidate for sustainable WW treatment. The nutrients which are otherwise unutilized in the conventional processes are recovered in the beneficial microalgal biomass. This review presents comprehensive information regarding the potential of microalgae as sustainable bioremediation agents. Microalgae-bacterial consortia play a critical role in synergistic nutrient removal, supported by the complex nutritional and metabolite exchange between microalgae and the associated bacteria. Design of effective microalgae-bacteria consortia either by screening or by recent technologies such as synthetic biology approaches are highly required for efficient WW treatment. Furthermore, this review discusses the crucial research gap in microalgal WW treatment - the application of a multi-omics platform for understanding microalgal response towards WW conditions and the design of effective microalgal or microalgae-bacteria consortia based on genetic information. While metagenomics helps in the identification and monitoring of the microbial community throughout the treatment process, transcriptomics, proteomics and metabolomics aid in studying the algal cellular response towards the nutrients and pollutants in WW. It has been established that the integration of microalgal processes into conventional WW treatment systems is feasible. In this direction, future research directions for microalgal WW treatment emphasize the need for identifying the niche in WW treatment, while highlighting the pilot sale plants in existence. Microalgae-based WW treatment could be a potential phase in the waste hierarchy of circular economy and sustainability, considering WWs are a rich secondary source of finite resources such as nitrogen and phosphorus.


Assuntos
Microalgas , Purificação da Água , Bactérias , Biomassa , Microalgas/metabolismo , Águas Residuárias
11.
Bioresour Technol ; 351: 126964, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35272036

RESUMO

Antibiotics in wastewaters (e.g., sulfonamides (SAs)) are not effectively removed by the conventional bacterial processes. In this study, a microalgae (Scenedesmus obliquus)-based process was evaluated for the removal of SAs. The maximum removal efficiency of sulfadiazine (SDZ) and sulfamethoxazole (SMX) by the consortium was 5.85% and 40.84%, respectively. The lower SDZ biodegradation efficiency could be due to the difference in the lipophilic degree related to cell binding. The presence of SAs did not significantly inhibit the biomass production of the consortium (1311-1952 mg/L biomass) but led to a 36-51% decrease in total polysaccharide content and an increase in microalgae's protein content, which caused granule formation. The presence of SMX and SDZ resulted in an increase in lipid peroxidation activity with a 6.2 and 23.5-fold increase in malondialdehyde content, respectively. Rhodobacter and Phreatobacter were abundant in the consortium with SAs' presence, while alinarimonas, Catalinimonas and Cecembia were seen in their absence.


Assuntos
Poluentes Ambientais , Microalgas , Bactérias , Biodegradação Ambiental , Sulfadiazina , Sulfametoxazol , Sulfanilamida , Sulfonamidas
12.
Bioresour Technol ; 351: 127021, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35306130

RESUMO

Microalgal biomass, known as the third generation feedstock for biofuels production, is currently being explored mainly for lipids and functional components. However, the potential of microalgal carbohydrates has not been evaluated. In this investigation, Chlorella vulgaris JSC-6 was used for carbohydrates production from CO2 and fatty acids under different cultivation strategies to meet the requirements of a CO2-neutral and clean fermentation system for biofuel production. Autotrophic cultivation resulted in better carbon assimilation and carbohydrate accumulation; about 1.4 g CO2 could be converted to 1 g biomass, of which 50% are carbohydrates. Assimilation of fatty acids in photoheterotrophic and mixotrophic modes was influenced by pH, and pH 7-7.5 supported butyrate and acetate assimilation. The maximum carbohydrate content (49.86%) was attained in mixotrophic mode, and the ratio of the simple sugars glucose-xylose-arabinose was 1:0.11:0.02. The higher glucose content makes the microalgal biomass a suitable feedstock for sugar-based fermentations.


Assuntos
Chlorella vulgaris , Microalgas , Biocombustíveis , Biomassa , Carboidratos , Dióxido de Carbono , Ácidos Graxos , Glucose , Concentração de Íons de Hidrogênio
13.
Bioresour Technol ; 344(Pt A): 126166, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34678452

RESUMO

Lactic acid (LA) is an essential commodity chemical, with bio-based LA ruling the market share. Macroalgae are a desirable feedstock for LA fermentation due to their high carbohydrate and low lignin content. Ulva sp., Gracilaria sp., and Sargassum cristaefolium were evaluated as a feedstock for LA fermentation. Mild acid-thermal hydrolysis (sulfuric acid concentrations < 5%) resulted in superior reducing sugar recovery. Gracilaria sp. attained maximum reducing sugar recovery (0.39 g/g biomass) and lactate yield (0.94 g/g). LA fermentation of fucose-rich hydrolysate of Sargassum cristaefolium is demonstrated for the first time, with 0.81 g/g LA yield and 0.36 g/g reducing sugars. Ulva sp. attained 0.21 g/g reducing sugars and 0.85 g/g LA yield. The efficiency of macroalgae for lactate bioconversion was in the order: red macroalgae > green macroalgae > brown macroalgae. L. rhamnosus and L. plantarum could efficaciously utilize seaweed sugars for LA production. Macroalgae can potentially replace lignocellulosic biomass as a feedstock in LA fermentation.


Assuntos
Alga Marinha , Weissella , Biomassa , Fermentação , Hidrólise , Ácido Láctico , Lactobacillus
14.
Bioresour Technol ; 343: 126149, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34673189

RESUMO

Microbial removal of Chlortetracycline (CTC) at low CTC concentrations (in the order of 10-20 mg/L) has been reported. In this study, a novel microalgae-bacteria consortium was developed for effective CTC biodegradation at higher concentrations (up to 80 mg/L). The microalgae-bacteria consortium is resistant to up to 80 mg/L CTC, while the pure microalgal culture could only tolerate 60 mg/L CTC. CTC removal in the initial 12 h was primarily via biosorption by the microalgae-bacteria consortium and the adsorption capacity increased from 61.71 to 102.53 mg/g biomass in 12 h. Further, CTC biodegradation by the microalgae-bacteria consortium was catalyzed by extracellular enzymes secreted under antibiotic stress. The symbiotic bacterial diversity was analyzed by high throughput sequencing. The aerobic bacteria Porphyrobacter and Devosia were the dominant genera in the consortium. In the presence of CTC, a microbial community shift occurred with Chloroptast, Spingopyxis, and Brevundimonas being the dominant genera.


Assuntos
Clortetraciclina , Microalgas , Antibacterianos , Bactérias , Biodegradação Ambiental , Biomassa
15.
Biotechnol Adv ; 54: 107819, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34454007

RESUMO

Microalgae biorefinery is a platform for the conversion of microalgal biomass into a variety of value-added products, such as biofuels, bio-based chemicals, biomaterials, and bioactive substances. Commercialization and industrialization of microalgae biorefinery heavily rely on the capability and efficiency of large-scale cultivation of microalgae. Thus, there is an urgent need for novel technologies that can be used to monitor, automatically control, and precisely predict microalgae production. In light of this, innovative applications of the Internet of things (IoT) technologies in microalgae biorefinery have attracted tremendous research efforts. IoT has potential applications in a microalgae biorefinery for the automatic control of microalgae cultivation, monitoring and manipulation of microalgal cultivation parameters, optimization of microalgae productivity, identification of toxic algae species, screening of target microalgae species, classification of microalgae species, and viability detection of microalgal cells. In this critical review, cutting-edge IoT technologies that could be adopted to microalgae biorefinery in the upstream and downstream processing are described comprehensively. The current advances of the integration of IoT with microalgae biorefinery are presented. What this review discussed includes automation, sensors, lab-on-chip, and machine learning, which are the main constituent elements and advanced technologies of IoT. Specifically, future research directions are discussed with special emphasis on the development of sensors, the application of microfluidic technology, robotized microalgae, high-throughput platforms, deep learning, and other innovative techniques. This review could contribute greatly to the novelty and relevance in the field of IoT-based microalgae biorefinery to develop smarter, safer, cleaner, greener, and economically efficient techniques for exhaustive energy recovery during the biorefinery process.


Assuntos
Internet das Coisas , Microalgas , Biocombustíveis , Biomassa , Plantas
16.
Bioresour Technol ; 342: 126014, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34852448

RESUMO

This work aimed to study the efficiency of polyvinyl-alcohol-immobilized Actinobacillus succinogenes ATCC55618 for succinic acid (SA) production. Batch fermentation (pH 7, 45% CO2 gas at 0.04 vvm) using glucose (40 g L-1) resulted in SA titer, 26.7 g L-1; productivity, 3.33 g L-1h-1; yield, 0.621 g g-1. Fed-batch mode with cyclic extrication of SA from the medium markedly enhanced the yield to 0.699 g g-1 and concentration to 59.5 g L-1. Batch fermentation using sugars derived from Chlorella vulgaris ESP-31 without yeast extract gave a SA productivity, concentration, and yield of 1.82 g L-1h-1, 36.1 g L-1, and 0.720 g g-1, respectively. Furthermore, continuous fermentation (at 6 h HRT) with microalgal sugar improved the productivity and yield to 3.53 g L-1h-1 and 0.62 g g-1, respectively, which is comparable to those obtained by using glucose. This study reports the highest productivity for SA fermentation using microalgae-derived sugars.


Assuntos
Actinobacillus , Chlorella vulgaris , Microalgas , Biomassa , Carboidratos , Fermentação , Ácido Succínico
17.
Bioresour Technol ; 342: 125968, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34563825

RESUMO

Attached cultivation of microalgae is a suitable strategy for attaining high biomass productivity with effortless harvesting. This study evaluates the feasibility of using Basic Oxygen Furnace Slag (BOFS) as a carrier for microalgae cultivation. Among the three indigenous microalgae (namely, Chlorella sorokiniana PTC13, Tetraselmis suecica SC5, and Nannochloropsis oceanica DG), which were examined for their capability of attached growth on BOFS, T. suecica SC5 showed the best attached-growth performance (2.52 mg/g slag). Optimizing the cultivation parameters (agitation rate, 200 rpm; added sodium acetate, 1 g/L; light intensity, 300 µmol/m2/s) further enhanced the attached biomass yield to 6.38 mg/g slag. The microalgae-attached slag can be used as the seed for re-growth for three additional cycles and the biomass yield and productivity both enhanced from 6.00 to 11.58 mg/g slag and 497 to 760 mg/L/d, respectively. This study demonstrated the potential of using T. suecica SC5-attached BOFS to construct artificial reefs.


Assuntos
Chlorella , Microalgas , Biomassa , Oxigênio
18.
Bioengineered ; 12(1): 3787-3801, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34281484

RESUMO

Hydrocolloids are a class of food additives with broad applications in the food industry to develop structure in food ingredients. Hydrocolloids can be synthetic, plant-based, or animal-based. Increasing consumer awareness has led to the use of natural food ingredients derived from natural sources, making algae-derived hydrocolloids more appealing nowadays. Algae-derived hydrocolloids such as carrageenan, agar, and alginate are widely used in the food industry as thickening, gelling, and emulsifying agents. Carrageenans are sulfated polysaccharides with diverse structural specificities. The safety of carrageenan use in the food industry has been widely debated recently due to the reported pro-inflammatory activities of carrageenan and the probable digestion of carrageenan by the gut microbiota to generate pro-inflammatory oligosaccharides. In contrast, both agar and alginate are primarily nontoxic, and generally no dispute regarding the use of the same in food ingredients. This review provides an overview of the algae industry, the food additives, the algae-derived hydrocolloids, the applications of algae-derived hydrocolloids in food industries, health-related studies, and other sectors, along with future perspectives. Even though differences of opinion exist in the use of carrageenan, it is continued to be used by the food industry and will be used until suitable alternatives are available. In summary, algal hydrocolloids are 'label-friendly' and considered a safe option against synthetic additives.


Assuntos
Alginatos , Carragenina , Coloides , Phaeophyceae/química , Rodófitas/química , Ágar , Clorófitas/química , Aditivos Alimentares , Indústria Alimentícia
19.
Essays Biochem ; 65(2): 337-353, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34132340

RESUMO

Pollution caused by persistent petro-plastics is the most pressing problem currently, with 8 million tons of plastic waste dumped annually in the oceans. Plastic waste management is not systematized in many countries, because it is laborious and expensive with secondary pollution hazards. Bioplastics, synthesized by microorganisms, are viable alternatives to petrochemical-based thermoplastics due to their biodegradable nature. Polyhydroxyalkanoates (PHAs) are a structurally and functionally diverse group of storage polymers synthesized by many microorganisms, including bacteria and Archaea. Some of the most important PHA accumulating bacteria include Cupriavidus necator, Burkholderia sacchari, Pseudomonas sp., Bacillus sp., recombinant Escherichia coli, and certain halophilic extremophiles. PHAs are synthesized by specialized PHA polymerases with assorted monomers derived from the cellular metabolite pool. In the natural cycle of cellular growth, PHAs are depolymerized by the native host for carbon and energy. The presence of these microbial PHA depolymerases in natural niches is responsible for the degradation of bioplastics. Polyhydroxybutyrate (PHB) is the most common PHA with desirable thermoplastic-like properties. PHAs have widespread applications in various industries including biomedicine, fine chemicals production, drug delivery, packaging, and agriculture. This review provides the updated knowledge on the metabolic pathways for PHAs synthesis in bacteria, and the major microbial hosts for PHAs production. Yeasts are presented as a potential candidate for industrial PHAs production, with their high amenability to genetic engineering and the availability of industrial-scale technology. The major bottlenecks in the commercialization of PHAs as an alternative for plastics and future perspectives are also critically discussed.


Assuntos
Poli-Hidroxialcanoatos , Agricultura , Bactérias/metabolismo , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/metabolismo
20.
Bioresour Technol ; 334: 125200, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33975143

RESUMO

Microalgae-derived carotenoids have increasingly been considered as feasible green alternatives for synthetic antioxidants. In this study, the lutein high-yielding strain (Chlorella sorokiniana MB-1; henceforth MB-1) and its mutant derivative (C. sorokiniana MB-1-M12; henceforth M12) were evaluated for their growth, biomass production, and lutein accumulation in three different cultivation modes - photoautotrophy, mixotrophy, and heterotrophy. M12 could grow effectively under heterotrophic conditions, but the lutein content was lower, indicating the necessity of photo-induction for lutein accumulation. Metabolic analysis of MB-1 and M12 in autotrophic growth in the presence of carbon dioxide indicated that carbon assimilation and channeling of the fixed metabolites towards carotenoid accumulation was elevated in M12 compared to MB-1. Novel two-stage alternative cultivation strategies (Autotrophic/Heterotrophic and Mixotrophic/Heterotrophic cultures) were applied for enhancing lutein production in M12. Maximum lutein quantity (6.17 mg/g) and production (33.64 mg/L) were obtained with the TSHM strategy that is considered the best two-stage operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA