Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 455: 139760, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38824734

RESUMO

In this study, six types of amino acids (Ala, Phe, Glu, Gly, Ser, and Lys) were combined with glucose to produce Maillard reaction products (MRPs) named G-Ala, G-Phe, G-Glu, G-Gly, G-Ser and G-Lys. The effect of MRPs on bread staling was evaluated through texture and sensory analyses during storage. Furthermore, the study comprehensively analyzed the anti-staling mechanisms of MRPs by examining moisture content, starches, and gluten network changes. The results indicated that G-Gly and G-Glu delayed bread staling, with G-Gly showing the most significant effect. Compared with control, the staling rate and starch crystallinity of G-Gly bread decreased by 24.07% and 7.70%, respectively. Moreover, G-Gly increased the moisture content (3.48%), weakly bound water mobility (0.77%), and α-helix content (1.00%) of bread. Component identification and partial least squares regression further confirmed the aldonic acid, heterocyclic acids and heterocyclic ketones in MRPs inhibit water evaporation, gluten network loosening, and starch degradation, thereby delaying bread staling.

2.
Int J Biol Macromol ; 267(Pt 1): 131439, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593902

RESUMO

In this study, an edible film was fabricated by incorporating anthocyanin extract from black rice (AEBR) into acetylated cassava starch (ACS)/carboxymethyl-cellulose (CMC) to enhance the shelf life of pumpkin seeds. The effects of AEBR on the rheological properties of film-forming solutions, as well as the structural characterization and physicochemical properties of the film, were evaluated. Rheological properties of solutions revealed that AEBR was evenly dispersed into polymer matrix and bound by hydrogen bonds, as confirmed by Fourier transform infrared spectroscopy analysis. The appropriate AEBR addition could be compatible with polymer matrix and formed a compact film structure, improving the mechanical properties, barrier properties, and opacity. However, with further addition of AEBR, the tensile strength and water vapor permeability decreased and the tight structure was destroyed. After being stored separately under thermal and UV light accelerated conditions for 20 days, the peroxide value and acid value of roasted pumpkin seeds coated with the AEBR film showed a significant reduction. Moreover, the storage stability of AEBR was improved through the embedding of ACS/CMC biopolymers. These results indicated that AEBR film could effectively delay pumpkin seeds oxidation and prolong their shelf life as an antioxidant material.


Assuntos
Antocianinas , Carboximetilcelulose Sódica , Cucurbita , Filmes Comestíveis , Manihot , Oxirredução , Sementes , Amido , Manihot/química , Antocianinas/química , Carboximetilcelulose Sódica/química , Amido/química , Sementes/química , Cucurbita/química , Acetilação , Permeabilidade , Resistência à Tração , Embalagem de Alimentos/métodos , Antioxidantes/química , Antioxidantes/farmacologia , Extratos Vegetais/química , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA