Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(30): e2303441, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37587776

RESUMO

Hyperpolarization techniques increase nuclear spin polarization by more than four orders of magnitude, enabling metabolic MRI. Even though hyperpolarization has shown clear value in clinical studies, the complexity, cost and slowness of current equipment limits its widespread use. Here, a polarization procedure of [1-13 C]pyruvate based on parahydrogen-induced polarization by side-arm hydrogenation (PHIP-SAH) in an automated polarizer is demonstrated. It is benchmarked in a study with 48 animals against a commercial dissolution dynamic nuclear polarization (d-DNP) device. Purified, concentrated (≈70-160 mM) and highly hyperpolarized (≈18%) solutions of pyruvate are obtained at physiological pH for volumes up to 2 mL within 85 s in an automated process. The safety profile, image quality, as well as the quantitative perfusion and lactate-to-pyruvate ratios, are equivalent for PHIP and d-DNP, rendering PHIP a viable alternative to established hyperpolarization techniques.


Assuntos
Hidrogênio , Ácido Pirúvico , Animais , Ácido Pirúvico/metabolismo , Isótopos de Carbono , Imageamento por Ressonância Magnética/métodos , Hidrogenação
2.
Angew Chem Int Ed Engl ; 62(36): e202306654, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37439488

RESUMO

Metabolic magnetic resonance imaging (MRI) using hyperpolarized (HP) pyruvate is becoming a non-invasive technique for diagnosing, staging, and monitoring response to treatment in cancer and other diseases. The clinically established method for producing HP pyruvate, dissolution dynamic nuclear polarization, however, is rather complex and slow. Signal Amplification By Reversible Exchange (SABRE) is an ultra-fast and low-cost method based on fast chemical exchange. Here, for the first time, we demonstrate not only in vivo utility, but also metabolic MRI with SABRE. We present a novel routine to produce aqueous HP [1-13 C]pyruvate-d3 for injection in 6 minutes. The injected solution was sterile, non-toxic, pH neutral and contained ≈30 mM [1-13 C]pyruvate-d3 polarized to ≈11 % (residual 250 mM methanol and 20 µM catalyst). It was obtained by rapid solvent evaporation and metal filtering, which we detail in this manuscript. This achievement makes HP pyruvate MRI available to a wide biomedical community for fast metabolic imaging of living organisms.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Imageamento por Ressonância Magnética/métodos , Solventes/química , Metanol , Água/química
3.
Magn Reson Med ; 90(3): 894-909, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37093981

RESUMO

PURPOSE: To develop a high spatiotemporal resolution 3D dynamic pulse sequence for preclinical imaging of hyperpolarized [1-13 C]pyruvate-to-[1-13 C]lactate metabolism at 7T. METHODS: A standard 3D balanced SSFP (bSSFP) sequence was modified to enable alternating-frequency excitations. RF pulses with 2.33 ms duration and 900 Hz FWHM were placed off-resonance of the target metabolites, [1-13 C]pyruvate (by approximately -245 Hz) and [1-13 C]lactate (by approximately 735 Hz), to selectively excite those resonances. Relatively broad bandwidth (compared to those metabolites' chemical shift offset) permits a short TR of 6.29 ms, enabling higher spatiotemporal resolution. Bloch equation simulations of the bSSFP response profile guided the sequence parameter selection to minimize spectral contamination between metabolites and preserve magnetization over time. RESULTS: Bloch equation simulations, phantom studies, and in vivo studies demonstrated that the two target resonances could be cleanly imaged without substantial bSSFP banding artifacts and with little spectral contamination between lactate and pyruvate and from pyruvate hydrate. High spatiotemporal resolution 3D images were acquired of in vivo pyruvate-lactate metabolism in healthy wild-type and endogenous pancreatic tumor-bearing mice, with 1.212 s acquisition time per single-metabolite image and (1.75 mm)3 isotropic voxels with full mouse abdomen 56 × 28 × 21 mm3 FOV and fully-sampled k-space. Kidney and tumor lactate/pyruvate ratios of two consecutive measurements in one animal, 1 h apart, were consistent. CONCLUSION: Spectrally selective bSSFP using off-resonant RF excitations can provide high spatio-temporal resolution 3D dynamic images of pyruvate-lactate metabolic conversion.


Assuntos
Ácido Láctico , Ácido Pirúvico , Camundongos , Animais , Ácido Pirúvico/metabolismo , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Isótopos de Carbono/metabolismo
4.
J Am Chem Soc ; 145(10): 5960-5969, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857421

RESUMO

We present a versatile method for the preparation of hyperpolarized [1-13C]fumarate as a contrast agent for preclinical in vivo MRI, using parahydrogen-induced polarization (PHIP). To benchmark this process, we compared a prototype PHIP polarizer to a state-of-the-art dissolution dynamic nuclear polarization (d-DNP) system. We found comparable polarization, volume, and concentration levels of the prepared solutions, while the preparation effort is significantly lower for the PHIP process, which can provide a preclinical dose every 10 min, opposed to around 90 min for d-DNP systems. With our approach, a 100 mM [1-13C]-fumarate solution of volumes up to 3 mL with 13-20% 13C-hyperpolarization after purification can be produced. The purified solution has a physiological pH, while the catalyst, the reaction side products, and the precursor material concentrations are reduced to nontoxic levels, as confirmed in a panel of cytotoxicity studies. The in vivo usage of the hyperpolarized fumarate as a perfusion agent in healthy mice and the metabolic conversion of fumarate to malate in tumor-bearing mice developing regions with necrotic cell death is demonstrated. Furthermore, we present a one-step synthesis to produce the 13C-labeled precursor for the hydrogenation reaction with high yield, starting from 13CO2 as a cost-effective source for 13C-labeled compounds.


Assuntos
Fumaratos , Imageamento por Ressonância Magnética , Camundongos , Animais , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Hidrogenação , Meios de Contraste
5.
MAGMA ; 33(2): 221-256, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31811491

RESUMO

Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Gases , Humanos , Campos Magnéticos , Perfusão , Ondas de Rádio , Ratos , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Ventilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA