Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 122(17): 3506-3515, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37528581

RESUMO

E-cadherin plays a central role in cell-cell adhesion. The ectodomains of wild-type cadherins form a crystalline-like two-dimensional lattice in cell-cell interfaces mediated by both trans (apposed cell) and cis (same cell) interactions. In addition to these extracellular forces, adhesive strength is further regulated by cytosolic phenomena involving α and ß catenin-mediated interactions between cadherin and the actin cytoskeleton. Cell-cell adhesion can be further strengthened under tension through mechanisms that have not been definitively characterized in molecular detail. Here we quantitatively determine the role of the cadherin ectodomain in mechanosensing. To this end, we devise an E-cadherin-coated emulsion system, in which droplet surface tension is balanced by protein binding strength to give rise to stable areas of adhesion. To reach the honeycomb/cohesive limit, an initial emulsion compression by centrifugation facilitates E-cadherin trans binding, whereas a high protein surface concentration enables the cis-enhanced stabilization of the interface. We observe an abrupt concentration dependence on recruitment into adhesions of constant crystalline density, reminiscent of a first-order phase transition. Removing the lateral cis interaction with a "cis mutant" shifts this transition to higher surface densities leading to denser, yet weaker adhesions. In both proteins, the stabilization of progressively larger areas of deformation is consistent with single-molecule experiments that show a force-dependent lifetime enhancement in the cadherin ectodomain, which may be attributed to the "X-dimer" bond.


Assuntos
Biomimética , Caderinas , Emulsões , Caderinas/metabolismo , Adesão Celular , Ligação Proteica
2.
Mol Biol Cell ; 31(7): 520-526, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32049586

RESUMO

How do early embryos allocate the resources stored in the sperm and egg? Recently, we established isothermal calorimetry to measure heat dissipation by living zebra-fish embryos and to estimate the energetics of specific developmental events. During the reductive cleavage divisions, the rate of heat dissipation increases from ∼60 nJ · s-1 at the two-cell stage to ∼90 nJ · s-1 at the 1024-cell stage. Here we ask which cellular process(es) drive this increasing energetic cost. We present evidence that the cost is due to the increase in the total surface area of all the cells of the embryo. First, embryo volume stays constant during the cleavage stage, indicating that the increase is not due to growth. Second, the heat increase is blocked by nocodazole, which inhibits DNA replication, mitosis, and cell division; this suggests some aspect of cell proliferation contributes to these costs. Third, the heat increases in proportion to the total cell surface area rather than total cell number. Fourth, the heat increase falls within the range of the estimated costs of maintaining and assembling plasma membranes and associated proteins. Thus, the increase in total plasma membrane associated with cell proliferation is likely to contribute appreciably to the total energy budget of the embryo.


Assuntos
Membrana Celular/metabolismo , Desenvolvimento Embrionário , Metabolismo Energético , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Contagem de Células , Membrana Celular/efeitos dos fármacos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Modelos Biológicos , Nocodazol/farmacologia , Temperatura
3.
Nucleic Acids Res ; 46(13): 6785-6796, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29873775

RESUMO

The respiratory syncytial virus (RSV) RNA dependent RNA polymerase (RdRp) initiates two RNA synthesis processes from the viral promoter: genome replication from position 1U and mRNA transcription from position 3C. Here, we examined the mechanism by which a single promoter can direct initiation from two sites. We show that initiation at 1U and 3C occurred independently of each other, and that the same RdRp was capable of precisely selecting the two sites. The RdRp preferred to initiate at 3C, but initiation site selection could be modulated by the relative concentrations of ATP versus GTP. Analysis of template mutations indicated that the RdRp could bind ATP and CTP, or GTP, independently of template nucleotides. The data suggest a model in which innate affinity of the RdRp for particular NTPs, coupled with a repeating element within the promoter, allows precise initiation of replication at 1U or transcription at 3C.


Assuntos
Regiões Promotoras Genéticas , Vírus Sinciciais Respiratórios/genética , Sítio de Iniciação de Transcrição , Replicação Viral , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Guanosina Trifosfato/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Vírus Sinciciais Respiratórios/enzimologia , Vírus Sinciciais Respiratórios/fisiologia , Moldes Genéticos , Iniciação da Transcrição Genética
4.
J Virol ; 89(15): 7786-98, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25995255

RESUMO

UNLABELLED: Respiratory syncytial virus (RSV) is the leading cause of pediatric respiratory disease. RSV has an RNA-dependent RNA polymerase that transcribes and replicates the viral negative-sense RNA genome. The large polymerase subunit (L) has multiple enzymatic activities, having the capability to synthesize RNA and add and methylate a cap on each of the viral mRNAs. Previous studies (H. Xiong et al., Bioorg Med Chem Lett, 23:6789-6793, 2013, http://dx.doi.org/10.1016/j.bmcl.2013.10.018; C. L. Tiong-Yip et al., Antimicrob Agents Chemother, 58:3867-3873, 2014, http://dx.doi.org/10.1128/AAC.02540-14) had identified a small-molecule inhibitor, AZ-27, that targets the L protein. In this study, we examined the effect of AZ-27 on different aspects of RSV polymerase activity. AZ-27 was found to inhibit equally both mRNA transcription and genome replication in cell-based minigenome assays, indicating that it inhibits a step common to both of these RNA synthesis processes. Analysis in an in vitro transcription run-on assay, containing RSV nucleocapsids, showed that AZ-27 inhibits synthesis of transcripts from the 3' end of the genome to a greater extent than those from the 5' end, indicating that it inhibits transcription initiation. Consistent with this finding, experiments that assayed polymerase activity on the promoter showed that AZ-27 inhibited transcription and replication initiation. The RSV polymerase also can utilize the promoter sequence to perform a back-priming reaction. Interestingly, addition of AZ-27 had no effect on the addition of up to three nucleotides by back-priming but inhibited further extension of the back-primed RNA. These data provide new information regarding the mechanism of inhibition by AZ-27. They also suggest that the RSV polymerase adopts different conformations to perform its different activities at the promoter. IMPORTANCE: Currently, there are no effective antiviral drugs to treat RSV infection. The RSV polymerase is an attractive target for drug development, but this large enzymatic complex is poorly characterized, hampering drug development efforts. AZ-27 is a small-molecule inhibitor previously shown to target the RSV large polymerase subunit (C. L. Tiong-Yip et al., Antimicrob Agents Chemother, 58:3867-3873, 2014, http://dx.doi.org/10.1128/AAC.02540-14), but its inhibitory mechanism was unknown. Understanding this would be valuable both for characterizing the polymerase and for further development of inhibitors. Here, we show that AZ-27 inhibits an early stage in mRNA transcription, as well as genome replication, by inhibiting initiation of RNA synthesis from the promoter. However, the compound does not inhibit back priming, another RNA synthesis activity of the RSV polymerase. These findings provide insight into the different activities of the RSV polymerase and will aid further development of antiviral agents against RSV.


Assuntos
Antivirais/farmacologia , Benzazepinas/farmacologia , Inibidores Enzimáticos/farmacologia , Niacinamida/análogos & derivados , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/enzimologia , Proteínas Virais/antagonistas & inibidores , Humanos , Niacinamida/farmacologia , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/genética , Transcrição Gênica/efeitos dos fármacos , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA