Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 84(10): 1560-1569, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479434

RESUMO

Genomic analysis of the T-cell receptor (TCR) reveals the strength, breadth, and clonal dynamics of the adaptive immune response to pathogens or cancer. The diversity of the TCR repertoire, however, means that sequencing is technically challenging, particularly for samples with low-quality, degraded nucleic acids. Here, we developed and validated FUME-TCRseq, a robust and sensitive RNA-based TCR sequencing methodology that is suitable for formalin-fixed paraffin-embedded samples and low amounts of input material. FUME-TCRseq incorporates unique molecular identifiers into each molecule of cDNA, allowing correction for sequencing errors and PCR bias. Using RNA extracted from colorectal and head and neck cancers to benchmark the accuracy and sensitivity of FUME-TCRseq against existing methods demonstrated excellent concordance between the datasets. Furthermore, FUME-TCRseq detected more clonotypes than a commercial RNA-based alternative, with shorter library preparation time and significantly lower cost. The high sensitivity and the ability to sequence RNA of poor quality and limited amount enabled quantitative analysis of small numbers of cells from archival tissue sections, which is not possible with other methods. Spatially resolved FUME-TCRseq analysis of colorectal cancers using macrodissected archival samples revealed the shifting T-cell landscapes at the transition to an invasive phenotype and between tumor subclones containing distinct driver alterations. In summary, FUME-TCRseq represents an accurate, sensitive, and low-cost tool for the characterization of T-cell repertoires, particularly in samples with low-quality RNA that have not been accessible using existing methodology. SIGNIFICANCE: FUME-TCRseq is a TCR sequencing methodology that supports sensitive and spatially resolved detection of TCR clones in archival clinical specimens, which can facilitate longitudinal tracking of immune responses through disease course and treatment.


Assuntos
Neoplasias Colorretais , Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , RNA/genética , Estabilidade de RNA
2.
iScience ; 26(6): 106937, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37275518

RESUMO

T cell responses precede antibody and may provide early control of infection. We analyzed the clonal basis of this rapid response following SARS-COV-2 infection. We applied T cell receptor (TCR) sequencing to define the trajectories of individual T cell clones immediately. In SARS-COV-2 PCR+ individuals, a wave of TCRs strongly but transiently expand, frequently peaking the same week as the first positive PCR test. These expanding TCR CDR3s were enriched for sequences functionally annotated as SARS-COV-2 specific. Epitopes recognized by the expanding TCRs were highly conserved between SARS-COV-2 strains but not with circulating human coronaviruses. Many expanding CDR3s were present at high frequency in pre-pandemic repertoires. Early response TCRs specific for lymphocytic choriomeningitis virus epitopes were also found at high frequency in the preinfection naive repertoire. High-frequency naive precursors may allow the T cell response to respond rapidly during the crucial early phases of acute viral infection.

3.
Methods Mol Biol ; 2574: 135-158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36087200

RESUMO

Adaptive immunity recognizes and responds to tumors, although they are part of the immunological "self." T cells, both CD4+ and CD8+, play a key role in the process, and the specific set of receptors which recognize tumor antigens therefore has the potential to provide prognostic biomarkers for tracking tumor growth after cancer therapy, including immunotherapy. Most published data on the T cell repertoire continue to rely on commercial proprietary methods, which often do not allow access to the raw data, and are difficult to validate. We describe an open-source protocol for amplifying, sequencing, and analyzing T cell receptors which is economical, robust, sensitive, and versatile. The key experimental step is the ligation of a single-stranded oligonucleotide to the 3' end of the T cell receptor cDNA, which allows easy amplification of all possible rearrangements using only a single set of primers per locus, while simultaneously introducing a unique molecular identifier to label each starting cDNA molecule. After sequencing, this molecular identifier can be used to correct both sequence errors and the effects of differential PCR amplification efficiency, thus producing a more accurate measure of the true T cell receptor frequency within the sample. Samples are then tagged with unique pairs of indices, facilitating robotic scale-up and significantly reducing cross-sample contamination from index hopping. This method has been applied to the analysis of tumor-infiltrating lymphocytes and matched peripheral blood samples from patients with a variety of solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Biomarcadores , DNA Complementar , Humanos , Linfócitos do Interstício Tumoral , Neoplasias/diagnóstico , Neoplasias/genética , Receptores de Antígenos de Linfócitos T/genética
4.
Cell Rep Med ; 3(3): 100557, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35474751

RESUMO

Effective control of SARS-CoV-2 infection on primary exposure may reveal correlates of protective immunity to future variants, but we lack insights into immune responses before or at the time virus is first detected. We use blood transcriptomics, multiparameter flow cytometry, and T cell receptor (TCR) sequencing spanning the time of incident non-severe infection in unvaccinated virus-naive individuals to identify rapid type 1 interferon (IFN) responses common to other acute respiratory viruses and cell proliferation responses that discriminate SARS-CoV-2 from other viruses. These peak by the time the virus is first detected and sometimes precede virus detection. Cell proliferation is most evident in CD8 T cells and associated with specific expansion of SARS-CoV-2-reactive TCRs, in contrast to virus-specific antibodies, which lag by 1-2 weeks. Our data support a protective role for early type 1 IFN and CD8 T cell responses, with implications for development of universal T cell vaccines.


Assuntos
COVID-19 , Interferon Tipo I , Linfócitos T CD8-Positivos , Citometria de Fluxo , Humanos , SARS-CoV-2/genética
5.
Proc Natl Acad Sci U S A ; 109(31): 12805-10, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22689944

RESUMO

A cell membrane can be considered a liquid-phase plane in which lipids and proteins theoretically are free to diffuse. Numerous reports, however, describe retarded diffusion of membrane proteins in animal cells. This anomalous diffusion results from a combination of structuring factors including protein-protein interactions, cytoskeleton corralling, and lipid organization into microdomains. In plant cells, plasma-membrane (PM) proteins have been described as relatively immobile, but the control mechanisms that structure the PM have not been studied. Here, we use fluorescence recovery after photobleaching to estimate mobility of a set of minimal PM proteins. These proteins consist only of a PM-anchoring domain fused to a fluorescent protein, but their mobilities remained limited, as is the case for many full-length proteins. Neither the cytoskeleton nor membrane microdomain structure was involved in constraining the diffusion of these proteins. The cell wall, however, was shown to have a crucial role in immobilizing PM proteins. In addition, by single-molecule fluorescence imaging we confirmed that the pattern of cellulose deposition in the cell wall affects the trajectory and speed of PM protein diffusion. Regulation of PM protein dynamics by the plant cell wall can be interpreted as a mechanism for regulating protein interactions in processes such as trafficking and signal transduction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Nicotiana/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Microdomínios da Membrana/genética , Proteínas de Membrana/genética , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Nicotiana/citologia , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA