Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Med Chem ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39377380

RESUMO

Paclitaxel is one notable chemotherapy drug that is used to treat a number of cancers, including lung cancer. Nevertheless, it has drawbacks such as toxicity, low solubility in water, and the emergence of multidrug resistance (MDR). This article reviews the use of liposomal formulations to improve paclitaxel administration and efficacy for lung cancer therapy. Paclitaxel's pharmacological characteristics can be improved by liposomes through increased solubility, extended circulation, passive tumor targeting through leaky vasculature, and decreased side effects. Recent developments in paclitaxel liposomal formulations, including as cationic liposomes, conventional liposomes, targeted liposomes with particular ligands, and liposome-loaded microorganisms, are outlined in this article. In comparison to free paclitaxel, these nanoformulations exhibit enhanced cytotoxicity, cellular uptake, apoptosis, tumor growth suppression, and anticancer effects in lung cancer cell lines and animal models. One efficient way to get around the drawbacks of paclitaxel is to alter its size, makeup, and surface characteristics. This will let the medication accumulate and penetrate tumors more easily, avoid multidrug resistance, and cause less systemic toxicity. The article explores clinical studies showcasing the safety and therapeutic efficacy of liposomal paclitaxel for individuals afflicted with lung cancer. In its entirety, the document provides an in-depth examination of the potential enhancement in paclitaxel's dispersion and anti-tumor impacts through the utilization of liposomal technology when addressing diverse manifestations of lung cancer.

2.
Expert Opin Drug Deliv ; : 1-22, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39323396

RESUMO

INTRODUCTION: The challenge in tissue engineering lies in replicating the intricate structure of the native extracellular matrix. Recent advancements in AM, notably 3D printing, offer unprecedented capabilities to tailor scaffolds precisely, controlling properties like structure and bioactivity. CAD tools complement this by facilitating design using patient-specific data. AREA'S COVERED: This review introduces additive manufacturing (AM) and computer-aided design (CAD) as pivotal tools in advancing tissue engineering, particularly cartilage regeneration. This article explores various materials utilized in AM, focusing on polymers and hydrogels for their advantageous properties in tissue engineering applications. Integrating bioactive molecules, including growth factors, into scaffolds to promote tissue regeneration is discussed alongside strategies involving different cell sources, such as stem cells, to enhance tissue development within scaffold matrices. EXPERT OPINION: Applications of AM and CAD in addressing specific challenges like osteochondral defects and osteoarthritis in cartilage tissue engineering are highlighted. This review consolidates current research findings, offering expert insights into the evolving landscape of AM and CAD technologies in advancing tissue engineering, particularly in cartilage regeneration.

3.
Int J Biol Macromol ; 278(Pt 3): 134962, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39179064

RESUMO

The administration of medicinal drugs orally or systemically limits the treatment of specific central nervous system (CNS) illnesses, such as certain types of brain cancers. These methods can lead to severe adverse reactions and inadequate transport of drugs to the brain, resulting in limited effectiveness. The CNS homeostasis is maintained by various barriers within the brain, such as the endothelial, epithelial, mesothelial, and glial barriers, which strictly control the movement of chemicals, solutes, and immune cells. Brain capillaries consist of endothelial cells (ECs) and perivascular pericytes, with pericytes playing a crucial role in maintaining the blood-brain barrier (BBB), influencing new blood vessel formation, and exhibiting secretory capabilities. This article summarizes the structural components and anatomical characteristics of the BBB. Intranasal administration, a non-invasive method, allows drugs to reach the brain by bypassing the BBB, while direct cerebral administration targets specific brain regions with high concentrations of therapeutic drugs. Technical and mechanical tools now exist to bypass the BBB, enabling the development of more potent and safer medications for neurological disorders. This review also covers clinical trials, formulations, challenges, and patents for a comprehensive perspective.


Assuntos
Barreira Hematoencefálica , Encefalopatias , Quitosana , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Portadores de Fármacos/química , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Encefalopatias/tratamento farmacológico , Animais , Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia
4.
Int J Biol Macromol ; 278(Pt 3): 134542, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39137858

RESUMO

Recent cancer therapy research has found that chitosan (Ch)-based nanoparticles show great potential for targeted gene delivery. Chitosan, a biocompatible and biodegradable polymer, has exceptional properties, making it an ideal carrier for therapeutic genes. These nanoparticles can respond to specific stimuli like pH, temperature, and enzymes, enabling precise delivery and regulated release of genes. In cancer therapy, these nanoparticles have proven effective in delivering genes to tumor cells, slowing tumor growth. Adjusting the nanoparticle's surface, encapsulating protective agents, and using targeting ligands have also improved gene delivery efficiency. Smart nanoparticles based on chitosan have shown promise in improving outcomes by selectively releasing genes in response to tumor conditions, enhancing targeted delivery, and reducing off-target effects. Additionally, targeting ligands on the nanoparticles' surface increases uptake and effectiveness. Although further investigation is needed to optimize the structure and composition of these nanoparticles and assess their long-term safety, these advancements pave the way for innovative gene-focused cancer therapies.


Assuntos
Quitosana , Técnicas de Transferência de Genes , Terapia Genética , Nanopartículas , Neoplasias , Quitosana/química , Humanos , Nanopartículas/química , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Terapia Genética/métodos , Animais , Concentração de Íons de Hidrogênio
5.
Curr Med Chem ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38982920

RESUMO

BACKGROUND: Most patients with non-muscle invasive bladder cancer (NMIBC) have a high direction for recurrence and disease progression, which remains a significant unresolved challenge in bladder cancer patients. Therefore, a constant search is necessary for identifying appropriate and reliable biomarkers for early diagnosis of NMIBC. The current study has aimed to search for valuable diagnostic biomarkers in the tissue and urine specimens of NMIBC patients. METHODS: The changes of twelve candidate mRNAs in a screening phase (40 tissue samples of NMIBC patients and their corresponding 40 urine specimens) and a subsequent independent validation phase (40 urine specimens) were estimated using real-time polymerase chain reaction (RT-qPCR). The receiver operating characteristic (ROC) analysis was executed to determine the potential diagnostic values of mRNAs. RESULTS: The mRNA levels of seven candidate genes were markedly higher in tissue specimens relative to their neighboring tissues. Among them, four mRNAs, including ERBB2, CCND1, MKI67, and MAGEA6, were differentially expressed in urine samples of NMIBC patients relative to control subjects. Further, the expression of these four mRNAs was validated in the validation step. Combining these biomarkers showed better diagnostic performance than single biomarkers in the urine sample for non-invasive NMIBC detection. The combination of these mRNAs and cytology enhanced the sensitivity of cytology from 37% to 87%. CONCLUSION: Our findings suggested that a four-mRNA panel may be promising in the non-invasive diagnosis of NMIBC, which deserves further investigation.

6.
Curr Pharm Des ; 30(36): 2850-2881, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39051580

RESUMO

In order to improve the treatment of lung cancer, this paper looks at the development of cisplatinbased liposomal nanocarriers. It focuses on addressing the drawbacks of conventional cisplatin therapy, including systemic toxicity, inadequate tumor targeting, and drug resistance. Liposomes, or spherical lipid vesicles, offer a potentially effective way to encapsulate cisplatin, enhancing its transport and minimizing harmful effects on healthy tissues. The article discusses many liposomal cisplatin formulations, including pH-sensitive liposomes, sterically stabilized liposomes, and liposomes coupled with specific ligands like EGFR antibodies. These novel formulations show promise in reducing cisplatin resistance, optimizing pharmacokinetics, and boosting therapeutic results in the two in vitro and in vivo models. They also take advantage of the Enhanced Permeability and Retention (EPR) effect in the direction of improved tumor accumulation. The study highlights the need for more investigation to move these liposomal formulations from experimental to clinical settings, highlighting their potential to offer less harmful and more effective cancer therapy alternatives.


Assuntos
Antineoplásicos , Cisplatino , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Lipossomos , Neoplasias Pulmonares , Nanopartículas , Lipossomos/química , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Cisplatino/farmacologia , Cisplatino/administração & dosagem , Cisplatino/química , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Animais , Nanopartículas/química , Portadores de Fármacos/química
7.
Curr Pharm Des ; 30(26): 2027-2046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38877860

RESUMO

The rising interest in hydrogels nowadays is due to their usefulness in physiological conditions as multi-stimuli-responsive hydrogels. To reply to the prearranged stimuli, including chemical triggers, light, magnetic field, electric field, ionic strength, temperature, pH, and glucose levels, dual/multi-stimuli-sensitive gels/hydrogels display controllable variations in mechanical characteristics and swelling. Recent attention has focused on injectable hydrogel-based drug delivery systems (DDS) because of its promise to offer regulated, controlled, and targeted medication release to the tumor site. These technologies have great potential to improve treatment outcomes and lessen side effects from prolonged chemotherapy exposure.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Hidrogéis/química , Humanos , Concentração de Íons de Hidrogênio , Animais
8.
Curr Med Chem ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38847253

RESUMO

Cancer therapy has seen significant advancements in recent years, with the emergence of RNA interference (RNAi) as a promising strategy for targeted gene silencing. However, the successful delivery of small interfering RNA (siRNA) to cancer cells remains a challenge. Chitosan nanoparticles (CSNPs) can be derived from the natural polysaccharide chitin sources. CSNPs have gained considerable attention as a potential solution to encapsulate siRNA due to their biocompatibility, and biodegradability. This article explores the application of CSNPs for siRNA delivery in cancer therapy. Firstly, it discusses the significance of siRNA in gene regulation and highlights its potential to selectively silence oncogenes or tumor suppressor genes, making it a powerful tool in cancer treatment. The obstacles associated with effective siRNA delivery, such as degradation by nucleases and poor cellular uptake, are also addressed. Next, the focus shifts to the unique properties of CSNPs that make them attractive for siRNA delivery. The discussion revolves around how chitosan can interact electrostatically with siRNA to create stable complexes, as well as the controlled release of siRNA from CSNPs. This controlled release ensures sustained and efficient delivery of siRNA to cancer cells, maximizing therapeutic efficacy. Moreover, the biocompatibility and biodegradability of CSNPs make them ideal for in vivo applications. Different approaches to modifying and functionalizing surfaces are investigated by emphasizing on enhancement of stability and targeting abilities of CSNPs in cancer treatment. Registered trials for CS and siRNA are summarized, along with ongoing investigations into various applications of chitosan in medical treatments. Overall, the application of CSNPs in siRNA delivery for cancer therapy holds great promise and offers a potential solution to overcome the challenges associated with RNAi-based treatments. Continued advancements in this field will likely lead to improved targeted therapies with reduced side effects, ultimately benefitting cancer patients worldwide.

9.
Sci Rep ; 14(1): 11928, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789508

RESUMO

Cancer stands as one of the most impactful illnesses in the modern world, primarily owing to its lethal consequences. The fundamental concern in this context likely stems from delayed diagnoses in patients. Hence, detecting various forms of cancer is imperative. A formidable challenge in cancer research has been the diagnosis and treatment of this disease. Early cancer diagnosis is crucial, as it significantly influences subsequent therapeutic steps. Despite substantial scientific efforts, accurately and swiftly diagnosing cancer remains a formidable challenge. It is well known that the field of cancer diagnosis has effectively included electrochemical approaches. Combining the remarkable selectivity of biosensing components-such as aptamers, antibodies, or nucleic acids-with electrochemical sensor systems has shown positive outcomes. In this study, we adapt a novel electrochemical biosensor for cancer detection. This biosensor, based on a glassy carbon electrode, incorporates a nanocomposite of reduced graphene oxide/Fe3O4/Nafion/polyaniline. We elucidated the modification process using SEM, TEM, FTIR, RAMAN, VSM, and electrochemical methods. To optimize the experimental conditions and monitor the immobilization processes, electrochemical techniques such as CV, EIS, and SWV were employed. The calibration graph has a linear range of 102-106 cells mL-1, with a detection limit of 5 cells mL-1.


Assuntos
Compostos de Anilina , Biomarcadores Tumorais , Técnicas Biossensoriais , Neoplasias da Mama , Técnicas Eletroquímicas , Polímeros de Fluorcarboneto , Grafite , Receptor ErbB-2 , Grafite/química , Humanos , Técnicas Biossensoriais/métodos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Técnicas Eletroquímicas/métodos , Compostos de Anilina/química , Polímeros de Fluorcarboneto/química , Linhagem Celular Tumoral , Receptor ErbB-2/metabolismo , Receptor ErbB-2/análise , Feminino , Óxido Ferroso-Férrico/química , Limite de Detecção , Eletrodos
10.
Curr Med Chem ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38726787

RESUMO

Improvements in cancer treatment are largely influenced by more people knowing about it and developing new ways to diagnose and treat it. New methods such as nanotheranostics and the use of tiny particles have greatly improved the diagnosis, control and treatment of cancer. They have also helped overcome problems with traditional treatments. Nanotheranostics contribute to personalized medicine by helping doctors choose the right treatment, track how well the treatment works, and plan future treatments. Polymers have many advantages as smart or durable drug formulations among small therapeutic platforms. These small sacks, which can be used for drug delivery and imaging, are not harmful to natural tissues and are becoming more popular. Scientists have found a special group of tiny particles made of polymers that can carry active ingredients. These particles show the potential of creating a useful platform for the diagnosis and treatment of diseases on a very small scale. In the past ten years, people have become more interested in polymersomes. They have been used for various medical purposes, such as controlling blood sugar, treating cancer and fighting bacteria. Polymers are stronger and more stable than liposomes. Biocompatible and biodegradable polymers are very important for faster translation and creation of useful medical formulations. Recent progress in this field includes the creation of intelligent, centralized and responsive containers. In this review, we will examine and provide information about polymersomes. We will discuss their properties and how they can be used as drug delivery systems.

11.
Curr Top Med Chem ; 24(17): 1464-1489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38752630

RESUMO

Chitosan-based nanoparticles have emerged as a promising tool in the realm of cancer therapy, particularly for gene delivery. With cancer being a prevalent and devastating disease, finding effective treatment options is of utmost importance. These nanoparticles provide a unique solution by encapsulating specific genes and delivering them directly to cancer cells, offering immense potential for targeted therapy. The biocompatibility and biodegradability of chitosan, a naturally derived polymer, make it an ideal candidate for this purpose. The nanoparticles protect the genetic material during transportation and enhance its cellular uptake, ensuring effective delivery to the site of action. Furthermore, the unique properties of chitosan-based nanoparticles allow for the controlled release of genes, maximizing their therapeutic effect while minimizing adverse effects. By advancing the field of gene therapy through the use of chitosan-based nanoparticles, scientists are making significant strides toward more humane and personalized treatments for cancer patients.


Assuntos
Neoplasias da Mama , Carcinoma Hepatocelular , Quitosana , Terapia Genética , Neoplasias Hepáticas , Nanopartículas , Ácidos Nucleicos , Quitosana/química , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Nanopartículas/química , Ácidos Nucleicos/química , Feminino , Técnicas de Transferência de Genes , Animais
12.
Curr Gene Ther ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38778601

RESUMO

Lung cancer is a significant cause of cancer-related death worldwide. It can be broadly categorised into small-cell lung cancer (SCLC) and Non-small cell lung cancer (NSCLC). Surgical intervention, radiation therapy, and the administration of chemotherapeutic medications are among the current treatment modalities. However, the application of chemotherapy may be limited in more advanced stages of metastasis due to the potential for adverse effects and a lack of cell selectivity. Although small-molecule anticancer treatments have demonstrated effectiveness, they still face several challenges. The challenges at hand in this context comprise insufficient solubility in water, limited bioavailability at specific sites, adverse effects, and the requirement for epidermal growth factor receptor inhibitors that are genetically tailored. Bio-macromolecular drugs, including small interfering RNA (siRNA) and messenger RNA (mRNA), are susceptible to degradation when exposed to the bodily fluids of humans, which can reduce stability and concentration. In this context, nanoscale delivery technologies are utilised. These agents offer encouraging prospects for the preservation and regulation of pharmaceutical substances, in addition to improving the solubility and stability of medications. Nanocarrier-based systems possess the notable advantage of facilitating accurate and sustained drug release, as opposed to traditional systemic methodologies. The primary focus of scientific investigation has been to augment the therapeutic efficacy of nanoparticles composed of lipids. Numerous nanoscale drug delivery techniques have been implemented to treat various respiratory ailments, such as lung cancer. These technologies have exhibited the potential to mitigate the limitations associated with conventional therapy. As an illustration, applying nanocarriers may enhance the solubility of small-molecule anticancer drugs and prevent the degradation of bio-macromolecular drugs. Furthermore, these devices can administer medications in a controlled and extended fashion, thereby augmenting the therapeutic intervention's effectiveness and reducing adverse reactions. However, despite these promising results, challenges remain that must be addressed. Multiple factors necessitate consideration when contemplating the application of nanoparticles in medical interventions. To begin with, the advancement of more efficient delivery methods is imperative. In addition, a comprehensive investigation into the potential toxicity of nanoparticles is required. Finally, additional research is needed to comprehend these treatments' enduring ramifications. Despite these challenges, the field of nanomedicine demonstrates considerable promise in enhancing the therapy of lung cancer and other respiratory diseases.

13.
Int J Biol Macromol ; 268(Pt 1): 131694, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642693

RESUMO

In the last ten years, the field of nanomedicine has experienced significant progress in creating novel drug delivery systems (DDSs). An effective strategy involves employing DNA nanoparticles (NPs) as carriers to encapsulate drugs, genes, or proteins, facilitating regulated drug release. This abstract examines the utilization of DNA NPs and their potential applications in strategies for controlled drug release. Researchers have utilized the distinctive characteristics of DNA molecules, including their ability to self-assemble and their compatibility with living organisms, to create NPs specifically for the purpose of delivering drugs. The DNA NPs possess numerous benefits compared to conventional drug carriers, such as exceptional stability, adjustable dimensions and structure, and convenient customization. Researchers have successfully achieved a highly efficient encapsulation of different therapeutic agents by carefully designing their structure and composition. This advancement enables precise and targeted delivery of drugs. The incorporation of drugs, genes, or proteins into DNA NPs provides notable advantages in terms of augmenting therapeutic effectiveness while reducing adverse effects. DNA NPs serve as a protective barrier for the enclosed payloads, preventing their degradation and extending their duration in the body. The protective effect is especially vital for delicate biologics, such as proteins or gene-based therapies that could otherwise be vulnerable to enzymatic degradation or quick elimination. Moreover, the surface of DNA NPs can be altered to facilitate specific targeting towards particular tissues or cells, thereby augmenting the accuracy of delivery. A significant benefit of DNA NPs is their capacity to regulate the kinetics of drug release. Through the manipulation of the DNA NPs structure, scientists can regulate the rate at which the enclosed cargo is released, enabling a prolonged and regulated dispensation of medication. This control is crucial for medications with limited therapeutic ranges or those necessitating uninterrupted administration to attain optimal therapeutic results. In addition, DNA NPs have the ability to react to external factors, including alterations in temperature, pH, or light, which can initiate the release of the payload at precise locations or moments. This feature enhances the precision of drug release control. The potential uses of DNA NPs in the controlled release of medicines are extensive. The NPs have the ability to transport various therapeutic substances, for example, drugs, peptides, NAs (NAs), and proteins. They exhibit potential for the therapeutic management of diverse ailments, including cancer, genetic disorders, and infectious diseases. In addition, DNA NPs can be employed for targeted drug delivery, traversing biological barriers, and surpassing the constraints of conventional drug administration methods.


Assuntos
DNA , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Nanopartículas , Proteínas , DNA/química , Nanopartículas/química , Humanos , Proteínas/química , Portadores de Fármacos/química , Animais , Sistemas de Liberação de Medicamentos , Nanomedicina/métodos
14.
Artigo em Inglês | MEDLINE | ID: mdl-38644717

RESUMO

Quantum dots (QDs) have attracted considerable interest due to their potential applications and economic viability in various industrial sectors, such as communications, displays, and solar cells. This fascination originates from the quantum size effect-induced remarkable optical properties exhibited by QDs. In recent years, significant progress has been made in producing QDs devoid of cadmium, known to be toxic to cells and living organisms. These QDs have generated considerable interest in bioimaging due to their potential for targeting molecules and cells. There is a developing need for diagnostics and therapy at the individual molecule and single-cell level in the medical field. As a result, the application of QDs in the medical industry is gaining momentum. This study provides an overview of the most recent developments in applying QDs for diagnostic and therapeutic purposes, also known as theranostics. It emphasizes specifically the use of QDs in cancer therapy.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38644713

RESUMO

Researchers in various fields continue to discover improved ways of local delivery of drugs to specific locations and try to increase the efficiency of these methods. Extensive research has been done on smart nano-biomaterials for drug delivery systems (DDS) in different dimensions. With the advancement of biomedical nanotechnology, conventional smart DDS with stimuli- responsive capability has been developed. Smart nano-biomaterials can respond to environmental changes caused by endogenous or exogenous elements: endogenous factors such as environmental pH, temperature gradient, enzymes, oxidation, and reduction potential. As well as exogenous factors, including light radiation, ultrasound, electric and magnetic fields. Currently, smart DDSs count as a major category in DDS and disease treatment. Currently, smart DDS are of great interest in drug delivery and treatment of diseases. With the improvements in gene and protein therapy, new methods have been presented to treat diseases without effective conventional treatment, especially cancer. Finally, the use of nanoparticles expanded due to the need for appropriate gene and protein delivery systems. This review discusses the advantages of protein and gene therapy, their challenges, and gene and protein delivery systems with nanoparticle-based delivery.

16.
Anticancer Agents Med Chem ; 24(12): 896-915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529608

RESUMO

Breast cancer is a highly prevalent disease on a global scale, with a 30% incidence rate among women and a 14% mortality rate. Developing countries bear a disproportionate share of the disease burden, while countries with greater technological advancements exhibit a higher incidence. A mere 7% of women under the age of 40 are diagnosed with breast cancer, and the prevalence of this ailment is significantly diminished among those aged 35 and younger. Chemotherapy, radiation therapy, and surgical intervention comprise the treatment protocol. However, the ongoing quest for a definitive cure for breast cancer continues. The propensity for cancer stem cells to metastasize and resistance to treatment constitute their Achilles' heel. The advancement of drug delivery techniques that target cancer cells specifically holds significant promise in terms of facilitating timely detection and effective intervention. Novel approaches to pharmaceutical delivery, including nanostructures and liposomes, may bring about substantial changes in the way breast cancer is managed. These systems offer a multitude of advantages, such as heightened bioavailability, enhanced solubility, targeted tumor destruction, and diminished adverse effects. The application of nano-drug delivery systems to administer anti-breast cancer medications is a significant subject of research. This article delves into the domain of breast cancer, conventional treatment methods, the incorporation of nanotechnology into managerial tactics, and strategic approaches aimed at tackling the disease at its core.


Assuntos
Antineoplásicos , Neoplasias da Mama , Sistemas de Liberação de Medicamentos , Lipossomos , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Lipossomos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Nanopartículas/química , Animais
17.
Crit Rev Clin Lab Sci ; 61(6): 473-495, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38450458

RESUMO

Nucleic acids, like DNA and RNA, serve as versatile recognition elements in electrochemical biosensors, demonstrating notable efficacy in detecting various cancer biomarkers with high sensitivity and selectivity. These biosensors offer advantages such as cost-effectiveness, rapid response, ease of operation, and minimal sample preparation. This review provides a comprehensive overview of recent developments in nucleic acid-based electrochemical biosensors for cancer diagnosis, comparing them with antibody-based counterparts. Specific examples targeting key cancer biomarkers, including prostate-specific antigen, microRNA-21, and carcinoembryonic antigen, are highlighted. The discussion delves into challenges and limitations, encompassing stability, reproducibility, interference, and standardization issues. The review suggests future research directions, exploring new nucleic acid recognition elements, innovative transducer materials and designs, novel signal amplification strategies, and integration with microfluidic devices or portable instruments. Evaluating these biosensors in clinical settings using actual samples from cancer patients or healthy donors is emphasized. These sensors are sensitive and specific at detecting non-communicable and communicable disease biomarkers. DNA and RNA's self-assembly, programmability, catalytic activity, and dynamic behavior enable adaptable sensing platforms. They can increase biosensor biocompatibility, stability, signal transduction, and amplification with nanomaterials. In conclusion, nucleic acids-based electrochemical biosensors hold significant potential to enhance cancer detection and treatment through early and accurate diagnosis.


Assuntos
Técnicas Biossensoriais , Detecção Precoce de Câncer , Técnicas Eletroquímicas , Neoplasias , Humanos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Detecção Precoce de Câncer/métodos , Neoplasias/diagnóstico , Biomarcadores Tumorais/análise , DNA/análise , RNA/análise
18.
Curr Top Med Chem ; 24(14): 1185-1211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38424436

RESUMO

Liposomes, spherical particles with phospholipid double layers, have been extensively studied over the years as a means of drug administration. Conventional manufacturing techniques like thin-film hydration and extrusion have limitations in controlling liposome size and distribution. Microfluidics enables superior tuning of parameters during the self-assembly of liposomes, producing uniform populations. This review summarizes microfluidic methods for engineering liposomes, including hydrodynamic flow focusing, jetting, micro mixing, and double emulsions. The precise control over size and lamellarity afforded by microfluidics has advantages for cancer therapy. Liposomes created through microfluidics and designed to encapsulate chemotherapy drugs have exhibited several advantageous properties in cancer treatment. They showcase enhanced permeability and retention effects, allowing them to accumulate specifically in tumor tissues passively. This passive targeting of tumors results in improved drug delivery and efficacy while reducing systemic toxicity. Promising results have been observed in pancreatic, lung, breast, and ovarian cancer models, making them a potential breakthrough in cancer therapy. Surface-modified liposomes, like antibodies or carbohydrates, also achieve active targeting. Overall, microfluidic fabrication improves reproducibility and scalability compared to traditional methods while maintaining drug loading and biological efficacy. Microfluidics-engineered liposomal formulations hold significant potential to overcome challenges in nanomedicine-based cancer treatment.


Assuntos
Antineoplásicos , Lipossomos , Nanopartículas , Neoplasias , Lipossomos/química , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Nanopartículas/química , Microfluídica , Sistemas de Liberação de Medicamentos
19.
ACS Biomater Sci Eng ; 10(3): 1262-1301, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38376103

RESUMO

The rapid maturation of smart city ecosystems is intimately linked to advances in the Internet of Things (IoT) and self-powered sensing technologies. Central to this evolution are battery-less sensors that are critical for applications such as continuous health monitoring through blood metabolites and vital signs, the recognition of human activity for behavioral analysis, and the operational enhancement of humanoid robots. The focus on biosensors that exploit the human body for energy-spanning wearable, attachable, and implantable variants has intensified, driven by their broad applicability in areas from underwater exploration to biomedical assays and earthquake monitoring. The heart of these sensors lies in their diverse energy harvesting mechanisms, including biofuel cells, and piezoelectric, triboelectric, and pyroelectric nanogenerators. Notwithstanding the wealth of research, the literature still lacks a holistic review that integrates the design challenges and implementation intricacies of such sensors. Our review seeks to fill this gap by thoroughly evaluating energy harvesting strategies from both material and structural perspectives and assessing their roles in powering an array of sensors for myriad uses. This exploration offers a comprehensive outlook on the state of self-powered sensing devices, tackling the nuances of their deployment and highlighting their potential to revolutionize data gathering in autonomous systems. The intent of this review is to chart the current landscape and future prospects, providing a pivotal reference point for ongoing research and innovation in self-powered wireless sensing technologies.


Assuntos
Tecnologia Biomédica , Tecnologia sem Fio
20.
Curr Med Chem ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38299296

RESUMO

Numerous techniques exist for the production of liposomes; however, these methods need to be revised due to their incapacity to achieve precise management of the dimensions and uniformity of liposomes and their inefficient utilization of reagents and resources. One particular challenge lies in replicating accurate form and size control seen in biological cells, as accomplishing this level of precision through macroscale approaches proves exceptionally arduous. The advent of microfluidic technology tackles this problem by lowering liposome synthesis to a centimeter-level chip, drastically cutting related costs, and enhancing liposome manufacturing efficiency and mobility. Although various microfluidic technologies for micro or nanoparticle preparation have been established, manufacturing microfluidic devices poses challenges due to their high cost and time-consuming nature. However, a promising and cost-effective solution lies in additive production, commonly guided by 3D printing. This innovative technique has demonstrated significant potential and has been successfully applied to create microfluidic chips. Here, we will explore using 3D printing to produce microfluidic devices specifically designed for liposome production. Moreover, the biomedical applications of the liposomes produced by 3D printing-fabricated chips will be fully discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA