Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chall ; 8(4): 2300315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617029

RESUMO

Carbons form critical components in biogas purification and energy storage systems and are used to modify polymer matrices. The environmental impact of producing carbons has driven research interest in biomass-derived carbons, although these have yield, processing, and resource competition limitations. Naturally formed fungal filaments are investigated, which are abundantly available as food- and biotechnology-industry by-products and wastes as cost-effective and sustainable templates for carbon networks. Pyrolyzed Agaricus bisporus and Pleurotus eryngii filament networks are mesoporous and microscale with a size regime close to carbon fibers. Their BET surface areas of ≈282 m2 g-1 and ≈60 m2 g-1, respectively, greatly exceed values associated with carbon fibers and non-activated pyrolyzed bacterial cellulose and approximately on par with values for carbon black and CNTs in addition to pyrolyzed pinewood, rice husk, corn stover or olive mill waste. They also exhibit greater specific capacitance than both non-activated and activated pyrolyzed bacterial cellulose in addition to YP-50F (coconut shell based) commercial carbons. The high surface area and specific capacitance of fungal carbon coupled with the potential to tune these properties through species- and growth-environment-associated differences in network and filament morphology and inclusion of inorganic material through biomineralization makes them potentially useful in creating supercapacitors.

2.
Adv Healthc Mater ; 13(8): e2302968, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38079208

RESUMO

Peripheral nerve reconstruction through the employment of nerve guidance conduits with Trichonephila dragline silk as a luminal filling has emerged as an outstanding preclinical alternative to avoid nerve autografts. Yet, it remains unknown whether the outcome is similar for silk fibers harvested from other spider species. This study compares the regenerative potential of dragline silk from two orb-weaving spiders, Trichonephila inaurata and Nuctenea umbratica, as well as the silk of the jumping spider Phidippus regius. Proliferation, migration, and transcriptomic state of Schwann cells seeded on these silks are investigated. In addition, fiber morphology, primary protein structure, and mechanical properties are studied. The results demonstrate that the increased velocity of Schwann cells on Phidippus regius fibers can be primarily attributed to the interplay between the silk's primary protein structure and its mechanical properties. Furthermore, the capacity of silk fibers to trigger cells toward a gene expression profile of a myelinating Schwann cell phenotype is shown. The findings for the first time allow an in-depth comparison of the specific cellular response to various native spider silks and a correlation with the fibers' material properties. This knowledge is essential to open up possibilities for targeted manufacturing of synthetic nervous tissue replacement.


Assuntos
Tecido Nervoso , Aranhas , Animais , Regeneração Nervosa/fisiologia , Células de Schwann , Seda/química
3.
Int J Biol Macromol ; 244: 125398, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37330085

RESUMO

Dragline silk of Trichonephila spiders has attracted attention in various applications. One of the most fascinating uses of dragline silk is in nerve regeneration as a luminal filling for nerve guidance conduits. In fact, conduits filled with spider silk can measure up to autologous nerve transplantation, but the reasons behind the success of silk fibers are not yet understood. In this study dragline fibers of Trichonephila edulis were sterilized with ethanol, UV radiation, and autoclaving and the resulting material properties were characterized with regard to the silk's suitability for nerve regeneration. Rat Schwann cells (rSCs) were seeded on these silks in vitro and their migration and proliferation were investigated as an indication for the fiber's ability to support the growth of nerves. It was found that rSCs migrate faster on ethanol treated fibers. To elucidate the reasons behind this behavior, the fiber's morphology, surface chemistry, secondary protein structure, crystallinity, and mechanical properties were studied. The results demonstrate that the synergy of dragline silk's stiffness and its composition has a crucial effect on the migration of rSCs. These findings pave the way towards understanding the response of SCs to silk fibers as well as the targeted production of synthetic alternatives for regenerative medicine applications.


Assuntos
Fibroínas , Tecido Nervoso , Aranhas , Animais , Ratos , Seda/química , Regeneração Nervosa , Medicina Regenerativa , Fibroínas/química
4.
ACS Appl Mater Interfaces ; 15(10): 12678-12695, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36876876

RESUMO

Hydrogels have shown potential in replacing damaged nerve tissue, but the ideal hydrogel is yet to be found. In this study, various commercially available hydrogels were compared. Schwann cells, fibroblasts, and dorsal root ganglia neurons were seeded on the hydrogels, and their morphology, viability, proliferation, and migration were examined. Additionally, detailed analyses of the gels' rheological properties and topography were conducted. Our results demonstrate vast differences on cell elongation and directed migration on the hydrogels. Laminin was identified as the driver behind cell elongation and in combination with a porous, fibrous, and strain-stiffening matrix structure responsible for oriented cell motility. This study improves our understanding of cell-matrix interactions and thereby facilitates tailored fabrication of hydrogels in the future.


Assuntos
Hidrogéis , Laminina , Laminina/farmacologia , Hidrogéis/farmacologia , Hidrogéis/química , Neurônios , Células de Schwann , Movimento Celular
5.
Adv Healthc Mater ; 12(11): e2203237, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36683305

RESUMO

Advanced nerve guidance conduits can provide an off-the-shelf alternative to autografts for the rehabilitation of segmental peripheral nerve injuries. In this study, the excellent processing ability of silk fibroin and the outstanding cell adhesion quality of spider dragline silk are combined to generate a silk-in-silk conduit for nerve repair. Fibroin-based silk conduits (SC) are characterized, and Schwann cells are seeded on the conduits and spider silk. Rat sciatic nerve (10 mm) defects are treated with an autograft (A), an empty SC, or a SC filled with longitudinally aligned spider silk fibers (SSC) for 14 weeks. Functional recovery, axonal re-growth, and re-myelination are assessed. The material characterizations determine a porous nature of the conduit. Schwann cells accept the conduit and spider silk as growth substrate. The in vivo results show a significantly faster functional regeneration of the A and SSC group compared to the SC group. In line with the functional results, the histomorphometrical analysis determines a comparable axon density of the A and SSC groups, which is significantly higher than the SC group. These findings demonstrate that the here introduced silk-in-silk nerve conduit achieves a similar regenerative performance as autografts largely due to the favorable guiding properties of spider dragline silk.


Assuntos
Fibroínas , Traumatismos dos Nervos Periféricos , Ratos , Animais , Seda/farmacologia , Seda/química , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Nervo Isquiático/fisiologia , Células de Schwann , Fibroínas/farmacologia , Fibroínas/química , Regeneração Nervosa/fisiologia
6.
Biomater Adv ; 140: 213089, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36037764

RESUMO

Spider silk has fascinated mankind for millennia, but it is only in recent decades that scientific research has begun to unravel all its characteristics and applications. The uniqueness of spider silk resides in its versatility, in which a combination of high strength and extensibility results in extraordinary toughness, superior to almost all natural and man-made fibers. Dragline silk consists of proteins with highly repetitive amino acid sequences, which have been correlated with specific secondary structures responsible for its physical properties. The native fiber also shows high cytocompatibility coupled with low immunogenicity, making it a promising natural biomaterial for numerous biomedical applications. Recently, novel technologies have enabled new insights into the material and biomedical properties of silk. Due to the increasing interest in spider silk, as well as the desire to produce synthetic alternatives, we present an update on the current knowledge of silk fibers produced by the spider genus Trichonephila.


Assuntos
Seda , Aranhas , Animais , Humanos , Estrutura Secundária de Proteína , Seda/química
7.
Front Cell Neurosci ; 16: 859545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418835

RESUMO

Functional recovery from peripheral nerve injuries depends on a multitude of factors. Schwann cells (SCs) are key players in the regenerative process as they develop repair-specific functions to promote axon regrowth. However, chronically denervated SCs lose their repair phenotype, which is considered as a main reason for regeneration failure. Previous studies reported a modulatory effect of low nuclear magnetic resonance therapy (NMRT) on cell proliferation and gene expression. To provide first insight into a possible effect of NMRT on cells involved in peripheral nerve regeneration, this study investigated whether NMRT is able to influence the cellular behavior of primary SC and dorsal root ganglion (DRG) neuron cultures in vitro. The effect of NMRT on rat SCs was evaluated by comparing the morphology, purity, proliferation rate, and expression levels of (repair) SC associated genes between NMRT treated and untreated SC cultures. In addition, the influence of (1) NMRT and (2) medium obtained from NMRT treated SC cultures on rat DRG neuron regeneration was examined by analyzing neurite outgrowth and the neuronal differentiation status. Our results showed that NMRT stimulated the proliferation of SCs without changing their morphology, purity, or expression of (repair) SC associated markers. Furthermore, NMRT promoted DRG neuron regeneration shown by an increased cell survival, enhanced neurite network formation, and progressed neuronal differentiation status. Furthermore, the medium of NMRT treated SC cultures was sufficient to support DRG neuron survival and neurite outgrowth. These findings demonstrate a beneficial impact of NMRT on DRG neuron survival and neurite formation, which is primarily mediated via SC stimulation. Our data suggest that NMRT could be suitable as a non-invasive auxiliary treatment option for peripheral nerve injuries and encourage future studies that investigate the effect of NMRT in a physiological context.

8.
FASEB J ; 35(2): e21196, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33210360

RESUMO

The search for a suitable material to promote regeneration after long-distance peripheral nerve defects turned the spotlight on spider silk. Nerve conduits enriched with native spider silk fibers as internal guiding structures previously demonstrated a regenerative outcome similar to autologous nerve grafts in animal studies. Nevertheless, spider silk is a natural material with associated limitations for clinical use. A promising alternative is the production of recombinant silk fibers that should mimic the outstanding properties of their native counterpart. However, in vitro data on the regenerative features that native silk fibers provide for cells involved in nerve regeneration are scarce. Thus, there is a lack of reference parameters to evaluate whether recombinant silk fiber candidates will be eligible for nerve repair in vivo. To gain insight into the regenerative effect of native spider silk, our study aims to define the behavioral response of primary Schwann cells (SCs), nerve-associated fibroblasts (FBs), and dorsal root ganglion (DRG) neurons cultured on native dragline silk from the genus Nephila and on laminin coated dishes. The established multi-color immunostaining panels together with confocal microscopy and live cell imaging enabled the analysis of cell identity, morphology, proliferation, and migration on both substrates in detail. Our findings demonstrated that native spider silk rivals laminin coating as it allowed attachment and proliferation and supported the characteristic behavior of all tested cell types. Axonal out-growth of DRG neurons occurred along longitudinally aligned SCs that formed sustained bundled structures resembling Bungner bands present in regenerating nerves. The migration of SCs along the silk fibers achieved the reported distance of regenerating axons of about 1 mm per day, but lacked directionality. Furthermore, rFBs significantly reduced the velocity of rSCs in co-cultures on silk fibers. In summary, this study (a) reveals features recombinant silk must possess and what modifications or combinations could be useful for enhanced nerve repair and (b) provides assays to evaluate the regenerative performance of silk fibers in vitro before being applied as internal guiding structure in nerve conduits in vivo.


Assuntos
Fibroblastos/efeitos dos fármacos , Regeneração Nervosa , Células de Schwann/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Seda/farmacologia , Animais , Movimento Celular , Células Cultivadas , Feminino , Fibroblastos/fisiologia , Masculino , Crescimento Neuronal , Ratos , Ratos Sprague-Dawley , Células de Schwann/fisiologia , Células Receptoras Sensoriais/fisiologia , Aranhas
9.
Mater Sci Eng C Mater Biol Appl ; 116: 111219, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806225

RESUMO

The successful reconstruction of supercritical peripheral nerve injuries remains a major challenge in modern medicine. Progress in tissue engineering has enabled the development of nerve guidance conduits as an alternative to autologous nerve transplantation and the enrichment of conduits with fibrous materials or hydrogels has shown great potential in bridging nerve defects. The application of the dragline silk of spider genus Nephila as a filament for nerve guidance conduits has led to promising results. However, the use of spider silk has been phenomenological so far and the reasons for its success are still not identified. This renders a targeted tuning of synthetic fibrous luminal fillings such as recombinant silk out of reach. In this work the existing research was extended and in addition to dragline, the cocoon silk of Nephila edulis, as well as the connecting and attaching silk of Avicularia avicularia were investigated. Scanning electron microscopy revealed a difference in size and morphology of the spider silks. However, in vitro experiments indicated that Schwann cells adhere to the four fibers, independent of these two attributes. Raman spectroscopy in native state and aqueous environment demonstrated similar secondary protein structures for dragline, cocoon, and connecting silk. In contrast, the attaching silk showed a significant lower conformation of ß-sheets, crucial for the stiffness of the silk. This was in line with the in vitro experiments, where the flexible attaching silk fibers adhered to each other when placed in liquid. This resulted in their inability to guide Schwann cells, leading to the generation of cell agglomerations. This direct comparison demonstrated the crucial role of ß-sheets conformation for the guidance properties of natural spider silk, providing essential insights into the necessary material properties for the integration of fibrous luminal fillings in nerve guidance conduits.


Assuntos
Tecido Nervoso , Aranhas , Animais , Estrutura Secundária de Proteína , Células de Schwann , Seda , Engenharia Tecidual
10.
Phys Chem Chem Phys ; 21(22): 11846-11860, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31119244

RESUMO

The formation mechanisms of microbumps and nanojets on films composed of single and double Cu/Ag layers deposited on a glass substrate and irradiated by a single 60 fs laser pulse are investigated experimentally and in atomistic simulations. The composition of the laser-modified bilayers is probed with the energy dispersive X-ray spectroscopy and used as a marker for processes responsible for the modification of the film morphology. For the bilayer with the top Ag layer facing the laser, the increase in fluence is found to result in a sequential appearance of a Ag microbump, the exposure of the Cu underlayer by removal of the Ag layer, a Cu microbump, and a frozen nanojet. The Cu on Ag bilayer exhibits a partial spallation of the top Cu film, followed by the generation of surface structures that mainly consist of Ag at higher fluences. The experimental observations are explained with atomistic simulations, which reveal that the stronger electron-phonon coupling of Cu results in the confinement of the deposited laser energy in the top Cu layer in the Cu on Ag case and channelling of the energy from the top Ag layer to the underlying Cu layer in the Ag on Cu case. This difference in the energy (re)distribution directly translates into differences in the morphology of the laser-modified bilayers. In all systems, the generation of microbumps and nanojets occurs in the molten state. It is driven by the dynamic relaxation of the laser-induced stresses and, at higher fluences, the release of vapor at the interface with the substrate. The resistance of the colder periphery of the laser spot to the ejection of spalled layers as well as the rapid solidification of the transient molten structures are largely defining the final shapes of the surface structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA