Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nutr Neurosci ; 25(12): 2659-2667, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34802394

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by a decrement in the number of synapses, an increment in the production of oxygen free radicals and inflammatory cytokines. Green tea (GT) plays a defensive performance in different neurodegenerative conditions, such as cognition deficit. This study investigated the neuroprotective effect of green tea (GT) on cognitive disorder, inflammation, and oxidative stress in the streptozotocin (STZ)- induced AD model. MATERIALS AND METHODS: The rats were divided into four groups: (1) Control, (2) GT, (3) Alz, and (4) GT + Alz. AD was induced by the injection of STZ (3 mg/kg, bilaterally, ICV). Morris water maze and passive avoidance tests were done to evaluate the memory and learning of rats. Biochemical parameters were measured with specialized ELISA kits. RESULTS: Briefly, data analysis revealed that GT administration for 21 days improved memory impairment induced by the injection of STZ. Pretreatment with GT enhanced time spent in the goal quarter and reduced latency time and path length. Furthermore, pretreatment with GT prevented the increment of malondialdehyde (MDA) concentration in STZ-treated rats. As a pro-inflammatory cytokine, tumor necrosis factor- α (TNF-α) concentration was suppressed with the GT pretreatment. Total antioxidant capacity was increased after GT administration in rats treated compared with AD rats. CONCLUSIONS: GT pretreatment attenuated STZ-induced learning and memory impairment through the suppression of TNF-α and MDA concentrations. The beneficial effects of GT on memory could be attributed to its protective effects on oxidative defenses.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Fármacos Neuroprotetores , Ratos , Animais , Doença de Alzheimer/tratamento farmacológico , Aprendizagem em Labirinto , Fator de Necrose Tumoral alfa , Chá , Ratos Wistar , Modelos Animais de Doenças , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Estreptozocina , Estresse Oxidativo , Transtornos da Memória/induzido quimicamente , Fármacos Neuroprotetores/uso terapêutico , Citocinas/metabolismo
2.
Avicenna J Phytomed ; 11(6): 599-609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804897

RESUMO

OBJECTIVE: Quercetin is one of the most popular flavonoid with protective effects against neural damages in Parkinson's disease (PD). We assessed the effect of quercetin administration on memory and motor function, hippocampal oxidative stress and brain-derived neurotrophic factor (BDNF) level in a 6-OHDA-induced Parkinson's rat model. MATERIAL AND METHODS: The animals were divided into the following five groups (n=8): control, sham-surgery (sham), lesion (PD), and lesion animals treated with quercetin at doses of 10 (Q10) and 25 (Q25) mg/kg. For induction of a model of PD, 6-OHDA was injected into the striatum of rats. The effects of quercetin were investigated on spatial memory, hippocampal BDNF and malondialdehyde (MDA) levels, and total antioxidant capacity (TAC). Spatial memory was assessed by Morris water maze test, and the neuronal firing frequency in hippocampal dentate gyrus (HDG) was evaluated by single-unit recordings. RESULTS: Mean path length and latency time, rotational behavior and hippocampal MDA concentration were significantly increased, while time spent in the goal quadrant, swimming speed, spike rate, and hippocampal levels of TAC and BDNF were significantly decreased in the PD group compared to the sham group (p<0.01 to p<0.001). Quercetin treatment significantly enhanced time spent in goal quadrant (p<0.05), swimming speed (p<0.001) and spike rate (p<0.01), improved hippocampal TAC (p<0.05 to p<0.001) and BDNF (p<0.01 to p<0.001) level, and decreased mean path length (p<0.001), latency time (p<0.05 to p<0.001), rotational behavior and hippocampal MDA concentration (p<0.05). CONCLUSION: The cognitive-enhancing effect of quercetin might be due to its antioxidant effects in the hippocampus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA