Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 278: 303-310, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30708334

RESUMO

With objective to design cyanobacterial biorefinery, taking Lyngbya as a model organism, a detail sequential protocol has been developed for production of UV protectant and lipids. This study addresses ultra violet radiations (UVR), exposure time of UVRT, nitrogen stress, salinity, oxidative stress to produce UV protectant and lipid in cyanobacteria. To evaluate these parameters a design of experiment (DOE; using a 2 k design) was performed. Based on chemical solubility property of UV protectant in form of mycosporine like amino acid (MAAs) and lipids were extracted. Quantitative and qualitative assay of UV protectant was confirmed by spectrophotometric scanning and Fourier-transform infrared spectroscopy and lipid through fatty acid methyl esters analysis. Nitrogen abundance and high oxidative stress is helpful in the synthesis of UV protectant. This study concluded, UV exposure is good strategy to induce synthesis of UV protectant and saturated lipid productivity. This biorefinery approach encourages economical and environmentally sustainable options.


Assuntos
Cianobactérias/metabolismo , Lipídeos/biossíntese , Raios Ultravioleta , Aminoácidos/metabolismo , Ácidos Graxos/metabolismo , Nitrogênio/metabolismo
2.
Bioresour Technol ; 278: 346-359, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30718075

RESUMO

In recent years, ever-increasing socio-economic awareness, and negative impact of excessive petro consumption have redirected the research interests towards bio-resources such as algal-based biomass. In order to meet current bio-economy challenges to produce high-value multiple products at a time, new integrated processes in research and development are necessary. Though various strategies have been posited for conversion of algal-based biomass to fuel and fine chemicals, none of them has been proved as economically viable and energetically feasible. Therefore, a range of other bio-products needs to be pursued. In this context, the algal bio-refinery concept has appeared with notable solution to recover multiple products from a single operation process. Herein, an algal-based bio-refinery platform for fuel, food, and pharmaceuticals considering Bio-refinery Complexity Index (BCI) has been evaluated, as an indicator of techno-economic risks. This review presents recent developments on algal-biomass utilization for various value-added products as part of an integrated bio-refinery.


Assuntos
Biomassa , Plantas/metabolismo , Biocombustíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA