Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 660: 124230, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38782156

RESUMO

Nanofibers (NFs) have proven to be very attractive tool as drug delivery plateform among the different plethora of nanosystems, owing to their unique features. They exhibit two- and three-dimensional structures some of which mimic structural environment of the body tissues, in addition to being safe, efficacious, and biocompatible drug delivery platform. Thus, this study embarked on fabricating polyvinyl alcohol/chitosan (PVA/CS) electrospun NFs encapsulating zopiclone (ZP) drug for intranasal brain targeted drug delivery. Electrospun NFs were optimized by adopting a three factor-two level full factorial design. The independent variables were: PVA/CS ratio (X1), flow rate (X2), and applied voltage (X3). The measured responses were: fiber diameter (Y1,nm), pore size (Y2,nm) and ultimate tensile strength (UTS,Y3,MPa). The selected optimum formula had resulted in NFs diameter of 215.90 ± 15.46 nm, pore size 7.12 ± 0.27 nm, and tensile strength around 6.64 ± 0.95 MPa. In-vitro biodegradability testing confirmed proper degradation of the NFs within 8 h. Moreover, swellability and breathability assessment revealed good hydrophilicity and permeability of the prepared NFs. Ex-vivo permeability study declared boosted ex-vivo permeation with an enhancement factor of 2.73 compared to ZP suspension. In addition, optimized NFs formula significantly reduced sleep latency and prolonged sleep duration in rats compared to IV ZP drug solution. These findings demonstrate the feasibility of employing the designed NFs as an effective safe platform for intranasal delivery of ZP for insomnia management.


Assuntos
Administração Intranasal , Compostos Azabicíclicos , Encéfalo , Quitosana , Sistemas de Liberação de Medicamentos , Nanofibras , Álcool de Polivinil , Animais , Nanofibras/química , Nanofibras/administração & dosagem , Porosidade , Álcool de Polivinil/química , Quitosana/química , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Masculino , Compostos Azabicíclicos/administração & dosagem , Compostos Azabicíclicos/química , Compostos Azabicíclicos/farmacocinética , Ratos , Resistência à Tração , Ratos Wistar , Liberação Controlada de Fármacos
2.
Mol Pharm ; 21(3): 999-1014, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38329097

RESUMO

The intranasal route has proven to be a reliable and promising route for delivering therapeutics to the central nervous system (CNS), averting the blood-brain barrier (BBB) and avoiding extensive first-pass metabolism of some drugs, with minimal systemic exposure. This is considered to be the main problem associated with other routes of drug delivery such as oral, parenteral, and transdermal, among other administration methods. The intranasal route maximizes drug bioavailability, particularly those susceptible to enzymatic degradation such as peptides and proteins. This review will stipulate an overview of the intranasal route as a channel for drug delivery, including its benefits and drawbacks, as well as different mechanisms of CNS drug targeting using nanoparticulate drug delivery systems devices; it also focuses on pharmaceutical dosage forms such as drops, sprays, or gels via the nasal route comprising different polymers, absorption promoters, CNS ligands, and permeation enhancers.


Assuntos
Encéfalo , Sistemas de Liberação de Medicamentos , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Nariz , Administração Intranasal , Preparações Farmacêuticas/metabolismo , Mucosa Nasal/metabolismo
3.
Drug Dev Ind Pharm ; 49(4): 316-327, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37158038

RESUMO

OBJECTIVE: The aim of the present study was to formulate chitosan-coated alginate nanoparticles containing the drug diphenhydramine hydrochloride (DHH). SIGNIFICANCE: Diphenhydramine hydrochloride (DHH) is the prototype of H1-antihistaminic drugs. It is a lipophilic drug, that easily crosses the blood-brain barrier when taken orally causing decrements in alertness and performance. Multiple applications of topical drug products are required. Thus, drug incorporation in nanocarriers would increase the skin penetration powers increasing the drug efficacy. METHODS: Chitosan-coated alginate (CCA) nanoparticles were prepared via polyelectrolyte complex technique adopting 23 full factorial designs. Three factors, namely, alginate concentration, drug-to-alginate ratio and CaCl2 volume, each in two levels were studied. The prepared formulae were evaluated utilizing entrapment efficiency (EE), particle size (PS), polydispersity index (PDI), zeta potential (ZP) and in vitro release. The characterization process was then followed by optimization. RESULTS: At alginate conc. of 1%, drug to alginate ratio of 2:1 and CaCl2 volume of 4 mL, NP8 was chosen as a candidate formula. Histopathological examination on shaved rat dorsal skin disclosed the safety of NP8 with no signs of necrosis or even inflammation. The enhanced topical delivery of diphenhydramine hydrochloride enclosed in the developed nanoparticles was further proved by induction of allergic reaction using intradermal histamine injection. The results revealed the superior ability of NP8 to decrease the diameter of the formed wheal in comparison to the marketed DHH product. CONCLUSION: Thus, CCA nanoparticles are considered candidate nanocarriers for fortifying the topical antihistaminic activity of DHH.


Assuntos
Quitosana , Nanopartículas , Ratos , Animais , Difenidramina/farmacologia , Portadores de Fármacos , Alginatos , Cloreto de Cálcio , Tamanho da Partícula
4.
Int J Pharm X ; 5: 100160, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36647457

RESUMO

Nano-structured lipid carriers containing zopiclone were prepared as a targeted drug delivery system to convey zopiclone directly to brain via nasal route. Nano-structured lipid carriers were constructed adopting hot emulsification-ultrasonication method using palmitic acid in place of the solid lipid, cod liver oil as liquid lipid, and poloxamer 407 as a surfactant. A three-factor three-level central composite face-centered design was used to optimize the formulated nano-structured lipid carriers. The independent factors were lipid amount (X1), surfactant amount (X2), and sonication time (X3). The examined responses were entrapment efficiency (EE,Y1,%), particle size (PS,Y2,nm), zeta potential(mV), polydispersity index(PDI,Y3), in vitro release(Q8h,Y4,%) and dissolution efficiency (DE,Y5,%). The optimum formula showed high entrapment efficiency of 94.31% ± 2.44, in vitro drug release of 83.89% ± 1.77 with dissolution efficiency equals 88.63% ± 2.01, small particle size of 71.27 nm ± 13.57 and low polydispersity index 0.097 ± 0.15. In vivo biodistribution in mice was evaluated by a radiobiological technique using radioiodinated zopiclone([131I]iodo-ZP). Results revealed the superiority of the intranasal route to deliver zopiclone directly to brain faster and higher brain uptake (6.9 ± 1.02%ID/g at 5 min post-administration). The current study confirmed that intranasal administration of nano-structured lipid carriers had great potential as an effective tool for targeted brain zopiclone delivery for insomnia treatment.

5.
Pharmaceutics ; 14(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36559120

RESUMO

Flibanserin was licensed by the United States Food and Drug Administration (FDA) as an oral non-hormonal therapy for pre-menopausal women with inhibited sexual desire disorder. However, it suffers from susceptibility to first-pass metabolism in the liver, low aqueous solubility, and degradation in the acidic stomach environment. Such hurdles result in a limited oral bioavailability of 33%. Thus, the aim of the study was to utilize the principles of nanotechnology and the benefits of an intranasal route of administration to develop a formulation that could bypass these drawbacks. A response-surface randomized D-optimal strategy was used for the formulation of flibanserin spanlastics (SPLs) with reduced size and increased absolute zeta potential. Two numerical factors were studied, namely the Span 60: edge activator ratio (w/w) and sonication time (min), in addition to one categorical factor that deals with the type of edge activator. Particle size (nm) and zeta potential (mV) were studied as responses. A mathematical optimization method was implemented for predicting the optimized levels of the variables. The optimized formulation was prepared using a Span: sodium deoxycholate ratio of 8:2 w/w; a sonication time of 5 min showed particle sizes of 129.70 nm and a zeta potential of -33.17 mV. Further in vivo assessment following intranasal administration in rats showed boosted plasma and brain levels, with 2.11- and 2.23-fold increases (respectively) compared to raw FLB. The aforementioned results imply that the proposed spanlastics could be regarded as efficient drug carriers for the trans-nasal delivery of drugs to the brain.

6.
Pharmaceutics ; 14(7)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35890379

RESUMO

Migraine is a severe neurovascular disease manifested mainly as unilateral throbbing headaches. Triptans are agonists for serotonin receptors. Zolmitriptan (ZMP) is a biopharmaceutics classification system (BCS) class III medication with an absolute oral bioavailability of less than 40%. As a result, our research intended to increase ZMP bioavailability by developing transdermal nanostructured lipid carriers (NLCs). NLCs were prepared utilizing a combination of hot melt emulsification and high-speed stirring in a 32 full factorial design. The studied variables were liquid lipid type (X1) and surfactant type (X2). The developed NLCs were evaluated in terms of particle size (Y1, nm), polydispersity index (Y2, PDI), zeta potential (Y3, mV), entrapment efficacy (Y4, %) and amount released after 6 h (Q6h, Y5, %). At 1% Mygliol as liquid lipid component and 1% Span 20 as surfactant, the optimized formula (NLC9) showed a minimum particle size (138 ± 7.07 nm), minimum polydispersity index (0.39 ± 0.001), acceptable zeta potential (-22.1 ± 0.80), maximum entrapment efficiency (73 ± 0.10%) and maximum amount released after 6 h (83.22 ± 0.10%). The optimized formula was then incorporated into gel preparation (HPMC) to improve the system stability and ease of application. Then, the pharmacokinetic study was conducted on rabbits in a cross-over design. The calculated parameters showed a higher area under the curve (AUC0-24, AUC0-∞ (ng·h/mL)) of the developed ZMP-NLCs loaded gel, with a 1.76-fold increase in bioavailability in comparison to the orally administered marketed product (Zomig®). A histopathological examination revealed the safety of the developed nanoparticles. The declared results highlight the potential of utilizing the proposed NLCs for the transdermal delivery of ZMP to improve the drug bioavailability.

7.
Int J Pharm ; 607: 121010, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34391852

RESUMO

Cytomegalovirus (CMV) retinitisis a vision-threatening disease that principally afflicts immunosuppressed patients. For the management of the disease, Ganciclovir (GCV) is usually administered systemically, where patients may suffer severe untoward effects. The ocularly-applied alternatives are either the intravitreal injections, which are frequently administered due to GCV short half-life, or the sustained-release implants, which require surgical removal upon drug depletion. Both therapies are invasive and should be completed by a medical expert. The objective of this research was to formulate a non-invasive alternative represented in GCV loaded ultra-fluidic glycerosomes (UFGs), which are glycerosomes containing sodium taurocholate as an edge activator (EA), then incorporating the optimal UFGs in polylactic acid (PLA)-based 3D printed ocusert to prolong the release of GCV. The experimental design, the statistical analysis, and the optimization were performed via Design-Expert® software. The optimal formulation (UFGs 6; composed of 600 mg Phosphatidylcholine (PC), 20 mg cholesterol, 0.1:1 weight molar ratio of EA: PC and 1 gm glycerol) possessed nanovesicles (441.70 ± 1.13 nm) that entrapped 69.33 ± 0.28 % of GCV, with zeta potential value of -37.00 ± 0.42 mV and deformability index value of 74.68 ± 0.71. The confocal microscopy results showed the supreme penetration power of UFGs through the rabbit's cornea, compared to edge-activated vesicles and conventional glycerosomes from the laden ocusert. Moreover, the topical application of the ocusert laden with the optimal GCV loaded UFGs to the rabbits' eyes evidenced their safety as per the histopathological findings. Furthermore, a pharmacokinetic study in the rabbit's aqueous humor demonstrated the sustained release of GCV from the ocusert laden with the optimal GCV loaded UFGs over 5 days. Inclusively, the ocusert laden with UFGs could be considered as a non-invasive sustaining drug delivery system of GCV for the management of CMV retinitis.


Assuntos
Retinite por Citomegalovirus , Ganciclovir , Animais , Antivirais , Retinite por Citomegalovirus/tratamento farmacológico , Humanos , Pilocarpina , Impressão Tridimensional , Coelhos
8.
Drug Deliv ; 28(1): 1301-1311, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34176378

RESUMO

Flibanserin (FLB) was approved by FDA for the treatment of pre-menopausal female hypoactive sexual desire disorder (HSDD). FLB suffers from low oral bioavailability (33%) which might be due to hepatic first-pass metabolism in addition to its poor aqueous solubility. The sublingual route could be a promising alternative for FLB due to the avoidance of enterohepatic circulation. However, the drug needs to dissolve in the small volume of saliva in order to be absorbed through the sublingual mucosa. Therefore, FLB nanocrystals were prepared by sono-precipitation technique according to 23 full factorial design. FLB-nanocrystals were formulated using two surfactants (PVP K30 and PL F127) in two different amounts (200 and 400 mg) and the volume of ethanol was either 3 or 5 mL. Nanocrystal formulation was optimized according to the desirability function to have a minimum particle size, zeta potential, polydispersity index, and maximum saturated solubility. The optimized formula had a particle size of 443.12 ± 14.91 nm and a saturated solubility of 23.27 ± 4.62 mg/L which is five times the saturated solubility of FLB. Nanocrystal dispersion of the optimized formula was solidified by freeze-drying and used to prepare rapidly disintegrating sublingual tablets containing Pharmaburst® as superdisintegrant. Sublingual tablet formulation with the shortest disintegration time (36 s) was selected for the in vivo study. FLB nanocrystal-based sublingual tablets exhibited a two-fold increase in bioavailability with a faster onset of action compared to the commercially available oral formulation. These findings prove the potential application of FLB nanocrystal-based sublingual tablets in the treatment of HSDD.


Assuntos
Benzimidazóis/farmacocinética , Nanopartículas/química , Administração Sublingual , Animais , Benzimidazóis/administração & dosagem , Química Farmacêutica , Estudos Cross-Over , Portadores de Fármacos/química , Libido , Masculino , Tamanho da Partícula , Coelhos , Distribuição Aleatória , Disfunções Sexuais Psicogênicas , Solubilidade , Propriedades de Superfície , Comprimidos
9.
Int J Pharm ; 582: 119302, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32276091

RESUMO

Lacidipine is a potent dihydropyridine calcium channel blocker used for management of hypertension and atherosclerosis. The drug has low and fluctuating oral bioavailability owing to its extensive hepatic first-pass metabolism and reduced water solubility. Accordingly, this work aimed at overcoming the aforementioned challenges through the formulation of intranasal nano-sized lacidipine glycerosomes. Box-Behnken was successfully employed for the formulation and in vitro optimization of the glycerosomes. Statistical analysis revealed that cholesterol concentration exhibited a significant effect on the vesicle size, while Phospholipon® 90G and glycerol concentrations exhibited significant effects on both entrapment efficiency and deformability index. The optimized formulation showed spherical shape, good deformability, vesicular size of 220.25 nm, entrapment efficiency of 61.97%, and enhanced ex vivo permeation by 3.65 fold compared to lacidipine suspension. Confocal laser scattering microscope revealed higher penetration depth via nasal mucosa for rhodamine labelled glycerosomes (up to 60 µm) in comparison to rhoadamine dye solution (26 µm). In addition, the optimized lacidipine glycerosomes caused significant reduction in methylprednisolone acetate-induced hypertension in rats for up to 24 h in comparison to oral drug suspension. Histopathological assessment showed intact nasal mucosal epithelial lining with no signs of inflammation or necrosis confirming the safety and tolerability of the proposed glycerosomes. The declared results highlights the potential of utilizing the proposed glycerosomes as safe and effective platform for intranasal delivery of lacidipine.


Assuntos
Anti-Hipertensivos/administração & dosagem , Pressão Sanguínea/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/administração & dosagem , Colesterol/química , Di-Hidropiridinas/administração & dosagem , Glicerol/química , Hipertensão/tratamento farmacológico , Fosfatidilcolinas/química , Administração Intranasal , Administração Oral , Animais , Anti-Hipertensivos/química , Anti-Hipertensivos/metabolismo , Anti-Hipertensivos/toxicidade , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/toxicidade , Di-Hidropiridinas/química , Di-Hidropiridinas/metabolismo , Di-Hidropiridinas/toxicidade , Modelos Animais de Doenças , Composição de Medicamentos , Liberação Controlada de Fármacos , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Lipossomos , Masculino , Acetato de Metilprednisolona , Absorção Nasal , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Permeabilidade , Ratos Wistar , Solubilidade
10.
Drug Deliv ; 23(9): 3681-3695, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27648847

RESUMO

Clonazepam (CZ) is an anti-epileptic drug used mainly in status epilepticus (SE). The drug belongs to Class II according to BCS classification with very limited solubility and high permeability and it suffers from extensive first-pass metabolism. The aim of the present study was to develop CZ-loaded polymeric micelles (PM) for direct brain delivery allowing immediate control of SE. PM were prepared via thin film hydration (TFH) technique adopting a central composite face-centered design (CCFD). The seventeen developed formulae were evaluated in terms of entrapment efficiency (EE), particle size (PS), polydispersity index (PDI), zeta potential (ZP), and in vitro release. For evaluating the in vivo behavior of the optimized formula, both biodistrbution using 99mTc-radiolabeled CZ and pharmacodynamics studies were done in addition to ex vivo cytotoxicty. At a drug:Pluronic® P123:Pluronic® L121 ratio of 1:20:20 (PM7), a high EE, ZP, Q8h, and a low PDI was achieved. The biodistribution studies revealed that the optimized formula had significantly higher drug targeting efficiency (DTE = 242.3%), drug targeting index (DTI = 144.25), and nose-to-brain direct transport percentage (DTP = 99.30%) and a significant prolongation of protection from seizures in comparison to the intranasally administered solution with minor histopathological changes. The declared results reveal the ability of the developed PM to be a strong potential candidate for the emergency treatment of SE.


Assuntos
Encéfalo/efeitos dos fármacos , Clonazepam/administração & dosagem , Clonazepam/química , Polímeros/química , Estado Epiléptico/tratamento farmacológico , Administração Intranasal/métodos , Animais , Química Farmacêutica/métodos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Masculino , Camundongos , Micelas , Mucosa Nasal/metabolismo , Tamanho da Partícula , Poloxâmero/química , Ovinos , Solubilidade , Distribuição Tecidual
11.
Drug Deliv ; 22(3): 286-97, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24601826

RESUMO

The objective of this study was the development of a colon-targeted microspheres which were compressed into tablets containing the non-steroidal anti-inflammatory bumadizone calcium hemihydrate. [corrected]. A 3(2) full factorial design was adopted for the evaluation of the prepared microspheres. The effect of two independent variables namely polymer type (Eudragit RS100, ethyl cellulose and cellulose acetate butyrate), and drug: polymer ratio (1:1, 9:1 and 18:1) was studied on the entrapment efficiency and in vitro drug release for 12 h. Colon targeting aims to minimize the release of the drug off target area (pH 1.2 and 6.8) and to maximize the release of the drug in target area (pH 7.4). Candidate formulae were compressed into core tablets and colon targeting was achieved using the enzyme-dependent polymer (pectin) as coat in three different concentrations 50, 75 and 90%. Candidate formula F15 (microspheres prepared using BDZ:CAB in a ratio of 18:1 and compressed into tablets using 50% pectin and 50% Avicel in the coat) was able to adequately modulate drug release avoiding drug release in the gastric ambient, and reaching the colonic targeting where 99.7% release was achieved within 12 h following zero-order model. In vivo studies showed that F15 achieved significant decrease in myeloperoxidase activity and inflammation with delayed Tmax (4 h) and lower Cmax (2700 ng/ml) when compared to marketed product.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Colo/efeitos dos fármacos , Portadores de Fármacos/química , Malonatos/administração & dosagem , Polímeros/química , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/uso terapêutico , Química Farmacêutica , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Colo/metabolismo , Colo/patologia , Modelos Animais de Doenças , Desenho de Fármacos , Liberação Controlada de Fármacos , Feminino , Masculino , Malonatos/farmacocinética , Malonatos/uso terapêutico , Microscopia Eletrônica de Varredura , Microesferas , Tamanho da Partícula , Coelhos , Propriedades de Superfície , Comprimidos com Revestimento Entérico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA