Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Contemp Brachytherapy ; 7(3): 254-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26207116

RESUMO

Optimal treatment for patients with only local prostate cancer recurrence after external beam radiation therapy (EBRT) failure remains unclear. Possible curative treatments are radical prostatectomy, cryosurgery, and brachytherapy. Several single institution series proved that high-dose-rate brachytherapy (HDRBT) and pulsed-dose-rate brachytherapy (PDRBT) are reasonable options for this group of patients with acceptable levels of genitourinary and gastrointestinal toxicity. A standard dose prescription and scheme have not been established yet, and the literature presents a wide range of fractionation protocols. Furthermore, hyperthermia has shown the potential to enhance the efficacy of re-irradiation. Consequently, a prospective trial is urgently needed to attain clear structured prospective data regarding the efficacy of salvage brachytherapy with adjuvant hyperthermia for locally recurrent prostate cancer. The purpose of this report is to introduce a new prospective phase II trial that would meet this need. The primary aim of this prospective phase II study combining Iridium-192 brachytherapy with interstitial hyperthermia (IHT) is to analyze toxicity of the combined treatment; a secondary aim is to define the efficacy (bNED, DFS, OS) of salvage brachytherapy. The dose prescribed to PTV will be 30 Gy in 3 fractions for HDRBT, and 60 Gy in 2 fractions for PDRBT. During IHT, the prostate will be heated to the range of 40-47°C for 60 minutes prior to brachytherapy dose delivery. The protocol plans for treatment of 77 patients.

2.
Int J Hyperthermia ; 31(5): 568-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25885417

RESUMO

PURPOSE: In this prospective preliminary study we evaluated changes of prostate volume and changes of brachytherapy treatment plan parameters due to interstitial hyperthermia (IHT) applied prior to high-dose-rate brachytherapy (HDRBT), compared to our standard HDRBT procedure. MATERIAL AND METHODS: In a group of 60 consecutive patients with prostate adenocarcinoma, 30 were treated with HDRBT alone and 30 with IHT preceding HDRBT. Prior to catheter implantation, a 'virtual' treatment plan (VP) was complied, a 'live' plan (LP) was prepared before patient irradiation, and a 'post' plan (PP) was drawn up after completing the irradiation procedure. In each plan, based on transrectal ultrasound images, the contours of the prostate, urethra, and rectum were delineated and the respective volumes and dose-volume histogram parameters were evaluated. These parameters, established for the LP, were then compared with those of the PP. RESULTS: Changes in prostate volume and in parameters of the treatment plans were observed, but differences between the two patient groups were not statistically significant. For all 60 patients treated, the average prostate volume in the VP was 32 cm(3), in the LP 41 cm(3), and the PP 43 cm(3). Average values of relative changes in the therapy planning parameters between LP and PP were for the prostate D90 -5.7%, V100 -5.6%, V200 -13.2%, for the urethra D0, 1 cm(3) -1.6%, and for rectum D2 cm(3) 0%. CONCLUSION: Hyperthermia prior to HDRBT does not significantly change the volume of the prostate and there is no need to perform the new treatment plan after the hyperthermia session.


Assuntos
Próstata/patologia , Neoplasias da Próstata/radioterapia , Braquiterapia/métodos , Humanos , Masculino , Micro-Ondas , Estudos Prospectivos , Neoplasias da Próstata/patologia , Radiometria , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA