Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39356548

RESUMO

In the realm of carbon fiber research, a variety of structural configurations is noted, comprising crystalline, noncrystalline, and semicrystalline forms. Recent investigations into this domain have revealed an array of intriguing phases of carbon, among which amorphous graphite is the most notable for its unique mechanical, thermal, and electrical properties that arise from its inherent topological disorders. In this study, we utilized the ReaxFF molecular dynamics (MD) simulations to investigate the carbonization and graphitization processes involved in the production of amorphous graphite from benzothiophene, a sulfur-containing polar aromatic precursor. We developed C/H/S ReaxFF force field parameters to describe the high-temperature chemistry of benzothiophene. Our investigation reveals the reaction mechanisms, providing critical insights into the underlying chemical processes toward the formation of amorphous graphite and the structural characteristics of the end products. The formation of volatile gaseous molecules and their continuous elimination led to the development of noncontinuous layered graphite structures analogous to amorphous graphite consisting of pentagons, hexagons, and heptagons. These findings offer unprecedented insights into the carbonization and graphitization processes of sulfur-containing heavy-end aromatic feedstock. This knowledge lays the groundwork for advancing synthesis methods and developing amorphous graphite materials with specific properties.

2.
ACS Appl Mater Interfaces ; 14(8): 10298-10307, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167253

RESUMO

Multiple unfavorable features, such as poor electronic conductivity of sulfur cathodes, the dissolution and shuttling of sodium polysulfides (Na2Sn) in electrolytes, and the slower kinetics for the decomposition of solid Na2S, make sodium-sulfur batteries (NaSBs) impractical. To overcome these obstacles, novel double-transition metal (DTM) MXenes, Mo2TiC2T2, (T = O and S) are studied as an anchoring material (AM) to immobilize higher-order polysulfides and to expedite the otherwise slower kinetics of insoluble short-chain polysulfides. Density functional theory (DFT) calculations are carried out to justify and compare the effectiveness of Mo2TiC2S2 and Mo2TiC2O2 as AMs by analyzing their interactions with S8/Na2Sn (n = 1, 2, 4, 6, and 8). Mo2TiC2S2 provides moderate adsorption strength compared to Mo2TiC2O2, therefore, it is expected to effectively inhibit Na2Sn dissolution and shuttling without causing decomposition of Na2Sn. The calculated Gibbs free energies of the rate-determining step for sulfur reduction reactions (SRR) are found to be significantly lower (0.791 eV for S and 0.628 eV for O functionalization) than that in vacuum (1.442 eV), suggesting that the SRR is more thermodynamically favorable on Mo2TiC2T2 during discharge. Additionally, both Mo2TiC2S2 and Mo2TiC2O2 demonstrated effective electrocatalytic activity for the decomposition of Na2S, with a substantial reduction in the energy barrier to 1.59 eV for Mo2TiC2S2 and 1.67 eV for Mo2TiC2O2. While Mo2TiC2O2 had superior binding properties, structural distortion is observed in Na2Sn, which may adversely affect cyclability. On the other hand, because of its moderate binding energy, enhanced electronic conductivity, and significantly faster oxidative decomposition kinetics of polysulfides, Mo2TiC2S2 can be considered as an effective AM for suppressing the shuttle effect and improving the performance of NaSBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA