Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Rec ; 24(1): e202300105, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37222655

RESUMO

Polyaniline (PANI) has piqued the interest of nanotechnology researchers due to its potential as an electrode material for supercapacitors. Despite its ease of synthesis and ability to be doped with a wide range of materials, PANI's poor mechanical properties have limited its use in practical applications. To address this issue, researchers investigated using PANI composites with materials with highly specific surface areas, active sites, porous architectures, and high conductivity. The resulting composite materials have improved energy storage performance, making them promising electrode materials for supercapacitors. Here, we provide an overview of recent developments in PANI-based supercapacitors, focusing on using electrochemically active carbon and redox-active materials as composites. We discuss challenges and opportunities of synthesizing PANI-based composites for supercapacitor applications. Furthermore, we provide theoretical insights into the electrical properties of PANI composites and their potential as active electrode materials. The need for this review stems from the growing interest in PANI-based composites to improve supercapacitor performance. By examining recent progress in this field, we provide a comprehensive overview of the current state-of-the-art and potential of PANI-based composites for supercapacitor applications. This review adds value by highlighting challenges and opportunities associated with synthesizing and utilizing PANI-based composites, thereby guiding future research directions.

2.
Environ Technol ; : 1-10, 2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36052577

RESUMO

Fast electroflotation extraction of heavy metals from wastewater is described. The results of experimental investigations of the extraction of iron, aluminium and chromium hydroxides from aqueous solutions in the presence of surfactants of various natures and ions of calcium by electroflotation are presented. It was found that the presence of Ca2+ in the solution at a concentration of 0.5 g/L reduced the degree of electroflotation extraction of Al(OH)3, Fe(OH)3, Cr(OH)3 regardless of the nature of the electrolyte. The addition of surfactants in the system in the presence of Ca2+ increased the amount of extraction of the dispersed phase. The greatest effect is achieved with the help of anionic surfactant sodium dodecyl sulphate, while the degree of extraction reached 98%. The high efficiency of the process of electroflotation extraction of the dispersed phase was due to the hydrophobization of the particle surface owing to the adsorption of surfactants on the surface of hydroxides. The recent method is useful to treat wastewater contaminated with aluminium, iron and chromium metal ions. The reason is that this method is very fast working within 20 min; Moreover, pH 7.0 working made this method ideal for utilisation in natural water treatment economically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA