Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6698): 890-894, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781391

RESUMO

Primordial neutral atomic gas, mostly composed of hydrogen, is the raw material for star formation in galaxies. However, there are few direct constraints on the amount of neutral atomic hydrogen (H i) in galaxies at early cosmic times. We analyzed James Webb Space Telescope (JWST) near-infrared spectroscopy of distant galaxies, at redshifts ≳8. From a sample of 12 galaxies, we identified three that show strong damped Lyman-α absorption due to H i in their local surroundings. The galaxies are located at spectroscopic redshifts of 8.8, 10.2, and 11.4, corresponding to 400 to 600 million years after the Big Bang. They have H i column densities ≳1022 cm-2, which is an order of magnitude higher than expected for a fully neutral intergalactic medium, and constitute a gas-rich population of young star-forming galaxies.

2.
Nature ; 630(8015): 54-58, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648852

RESUMO

Large-scale outflows driven by supermassive black holes are thought to have a fundamental role in suppressing star formation in massive galaxies. However, direct observational evidence for this hypothesis is still lacking, particularly in the young universe where star-formation quenching is remarkably rapid1-3, thus requiring effective removal of gas4 as opposed to slow gas heating5,6. Although outflows of ionized gas are frequently detected in massive distant galaxies7, the amount of ejected mass is too small to be able to suppress star formation8,9. Gas ejection is expected to be more efficient in the neutral and molecular phases10, but at high redshift these have only been observed in starbursts and quasars11,12. Here we report JWST spectroscopy of a massive galaxy experiencing rapid quenching at a redshift of 2.445. We detect a weak outflow of ionized gas and a powerful outflow of neutral gas, with a mass outflow rate that is sufficient to quench the star formation. Neither X-ray nor radio activity is detected; however, the presence of a supermassive black hole is suggested by the properties of the ionized gas emission lines. We thus conclude that supermassive black holes are able to rapidly suppress star formation in massive galaxies by efficiently ejecting neutral gas.

3.
Nature ; 592(7855): 534-536, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33883729

RESUMO

Gravitational interactions between the Large Magellanic Cloud (LMC) and the stellar and dark matter halo of the Milky Way are expected to give rise to disequilibrium phenomena in the outer Milky Way1-7. A local wake is predicted to trail the orbit of the LMC, and a large-scale overdensity is predicted to exist across a large area of the northern Galactic hemisphere. Here we report the detection of both the local wake and northern overdensity (hereafter the 'collective response') in a map of the Galaxy based on 1,301 stars at Galactocentric distances between 60 and 100 kiloparsecs. The location of the wake is in good agreement with an N-body simulation that includes the dynamical effect of the LMC on the Milky Way halo. The density contrast of the wake and collective response are stronger in the data than in the simulation. The detection of a strong local wake is independent evidence that the Magellanic clouds are on their first orbit around the Milky Way. The wake traces the path of the LMC, which will provide insight into the orbit of the LMC, which in turn is a sensitive probe of the mass of the LMC and the Milky Way. These data demonstrate that the outer halo is not in dynamical equilibrium, as is often assumed. The morphology and strength of the wake could be used to test the nature of dark matter and gravity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA