RESUMO
Breast cancer treatment has evolved drastically with the addition of immunotherapy and novel targeted drugs to the current treatment options. However, achieving long-term responses with minimal adverse events remains challenging. Cancer testis antigens (CTAs) offer novel opportunities for drug development thanks to their tumor specificity, immunogenicity, pro-tumorigenic functions, and negative prognostic connotations. We previously reported that lactate dehydrogenase C (LDHC) plays a key role in regulating genomic stability and that targeting LDHC significantly improved treatment response to DNA damage response drugs in breast cancer. Here, we explored the molecular mechanisms associated with LDHC silencing in two basal-like breast cancer cell lines, MDA-MB-468 and BT-549, and a Her2-enriched breast cancer cell line, HCC-1954. Transcriptomic analyses identified the cell line-dependent differential activation of the pro-survival STAT3 pathway following LDHC depletion. While LDHC silencing significantly compromised cell survival in basal-like breast cancer cells in conjunction with a downregulation of STAT3 signaling, the opposite effect was observed in Her2-enriched breast cancer cells, which demonstrated the enhanced activation of the pro-survival STAT3 signaling pathway. The inhibition of STAT3 not only reversed the unfavorable effect of LDHC silencing in the Her2-enriched cancer cells but also demonstrated significant anti-cancer activity when used as a single agent. Our findings suggest that the LDHC-STAT3 signaling axis plays a role in regulating breast tumor cell survival in a subtype-dependent manner. Thus, LDHC-targeted therapy could be a viable therapeutic approach for a subset of breast cancer patients, particularly patients with basal-like breast cancer, whereas patients carrying Her2-enriched tumors may likely benefit more from monotherapy with STAT3 inhibitors.
RESUMO
Cancer care has witnessed remarkable progress in recent decades, with a wide array of targeted therapies and immune-based interventions being added to the traditional treatment options such as surgery, chemotherapy, and radiotherapy. However, despite these advancements, the challenge of achieving high tumor specificity while minimizing adverse side effects continues to dictate the benefit-risk balance of cancer therapy, guiding clinical decision making. As such, the targeting of cancer testis antigens (CTAs) offers exciting new opportunities for therapeutic intervention of cancer since they display highly tumor specific expression patterns, natural immunogenicity and play pivotal roles in various biological processes that are critical for tumor cellular fitness. In this review, we delve deeper into how CTAs contribute to the regulation and maintenance of genomic integrity in cancer, and how these mechanisms can be exploited to specifically target and eradicate tumor cells. We review the current clinical trials targeting aforementioned CTAs, highlight promising pre-clinical data and discuss current challenges and future perspectives for future development of CTA-based strategies that exploit tumor genomic instability.
RESUMO
BACKGROUND: Lack of Schlafen family member 11 (SLFN11) expression has been recently identified as a dominant genomic determinant of response to DNA damaging agents in numerous cancer types. Thus, several strategies aimed at increasing SLFN11 are explored to restore chemosensitivity of refractory cancers. In this study, we examined various approaches to elevate SLFN11 expression in breast cancer cellular models and confirmed a corresponding increase in chemosensitivity with using the most successful efficient one. As oncogenic transcriptomic downregulation is often driven by methylation of the promotor region, we explore the demethylation effect of 5-aza-2'-deoxycytidine (decitabine), on the SLFN11 gene. Since SLFN11 has been reported as an interferon inducible gene, and interferon is secreted during an active anti-tumor immune response, we investigated the in vitro effect of IFN-γ on SLFN11 expression in breast cancer cell lines. As a secondary approach to pick up cross talk between immune cells and SLFN11 expression we used indirect co-culture of breast cancer cells with activated PBMCs and evaluated if this can drive SLFN11 upregulation. Finally, as a definitive and specific way to modulate SLFN11 expression we implemented SLFN11 dCas9 (dead CRISPR associated protein 9) systems to specifically increase or decrease SLFN11 expression. RESULTS: After confirming the previously reported correlation between methylation of SLFN11 promoter and its expression across multiple cell lines, we showed in-vitro that decitabine and IFN-γ could increase moderately the expression of SLFN11 in both BT-549 and T47D cell lines. The use of a CRISPR-dCas9 UNISAM and KRAB system could increase or decrease SLFN11 expression significantly (up to fivefold), stably and specifically in BT-549 and T47D cancer cell lines. We then used the modified cell lines to quantify the alteration in chemo sensitivity of those cells to treatment with DNA Damaging Agents (DDAs) such as Cisplatin and Epirubicin or DNA Damage Response (DDRs) drugs like Olaparib. RNAseq was used to elucidate the mechanisms of action affected by the alteration in SLFN11 expression. In cell lines with robust SLFN11 promoter methylation such as MDA-MB-231, no SLFN11 expression could be induced by any approach. CONCLUSION: To our knowledge this is the first report of the stable non-lethal increase of SLFN11 expression in a cancer cell line. Our results show that induction of SLFN11 expression can enhance DDA and DDR sensitivity in breast cancer cells and dCas9 systems may represent a novel approach to increase SLFN11 and achieve higher sensitivity to chemotherapeutic agents, improving outcome or decreasing required drug concentrations. SLFN11-targeting therapies might be explored pre-clinically to develop personalized approaches.
RESUMO
BACKGROUND: Advances in our understanding of the tumor microenvironment have radically changed the cancer field, highlighting the emerging need for biomarkers of an active, favorable tumor immune phenotype to aid treatment stratification and clinical prognostication. Numerous immune-related gene signatures have been defined; however, their prognostic value is often limited to one or few cancer types. Moreover, the area of non-coding RNA as biomarkers remains largely unexplored although their number and biological roles are rapidly expanding. METHODS: We developed a multi-step process to identify immune-related long non-coding RNA signatures with prognostic connotation in multiple TCGA solid cancer datasets. RESULTS: Using the breast cancer dataset as a discovery cohort we found 2988 differentially expressed lncRNAs between immune favorable and unfavorable tumors, as defined by the immunologic constant of rejection (ICR) gene signature. Mapping of the lncRNAs to a coding-non-coding network identified 127 proxy protein-coding genes that are enriched in immune-related diseases and functions. Next, we defined two distinct 20-lncRNA prognostic signatures that show a stronger effect on overall survival than the ICR signature in multiple solid cancers. Furthermore, we found a 3 lncRNA signature that demonstrated prognostic significance across 5 solid cancer types with a stronger association with clinical outcome than ICR. Moreover, this 3 lncRNA signature showed additional prognostic significance in uterine corpus endometrial carcinoma and cervical squamous cell carcinoma and endocervical adenocarcinoma as compared to ICR. CONCLUSION: We identified an immune-related 3-lncRNA signature with prognostic connotation in multiple solid cancer types which performed equally well and in some cases better than the 20-gene ICR signature, indicating that it could be used as a minimal informative signature for clinical implementation.
Assuntos
Carcinoma de Células Escamosas , RNA Longo não Codificante , Neoplasias do Colo do Útero , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Microambiente Tumoral , Neoplasias do Colo do Útero/genéticaRESUMO
The cancer testis antigen (CTA) lactate dehydrogenase C (LDHC) is a promising anticancer target with tumor-specific expression and immunogenicity. Interrogation of breast cancer patient cohorts from The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) indicate that upregulation of LDHC expression correlates with unfavorable prognosis. Although the role of LDHC is well characterized in spermatocytes, its role in tumors remains largely unknown. We investigated whether LDHC is involved in regulating genomic stability and whether it could be targeted to affect tumor cellular fitness. Silencing LDHC in four breast cancer cell lines significantly increased the presence of giant cells, nuclear aberrations, DNA damage, and apoptosis. LDHC-silenced cells demonstrated aberrant cell cycle progression with differential expression of cell cycle checkpoint and DNA damage response regulators. In addition, LDHC silencing-induced microtubule destabilization, culminating in increased mitotic catastrophe and reduced long-term survival. Notably, the clonogenicity of LDHC-silenced cells was further reduced by treatment with the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib and with the DNA-damaging drug cisplatin. This study supports the therapeutic potential of targeting LDHC to mitigate cancer cell survival and improve sensitivity to agents that cause DNA damage or inhibit its repair.
Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Ciclo Celular , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Isoenzimas , L-Lactato Desidrogenase/metabolismo , Masculino , Ftalazinas/farmacologia , Ftalazinas/uso terapêuticoRESUMO
PReferentially expressed Antigen in Melanoma (PRAME) is a cancer testis antigen with restricted expression in somatic tissues and re-expression in poor prognostic solid tumours. PRAME has been extensively investigated as a target for immunotherapy, however, its role in modulating the anti-tumour immune response remains largely unknown. Here, we show that PRAME tumour expression is associated with worse survival in the TCGA breast cancer cohort, particularly in immune-unfavourable tumours. Using direct and indirect co-culture models, we found that PRAME overexpressing MDA-MB-468 breast cancer cells inhibit T cell activation and cytolytic potential, which could be partly restored by silencing of PRAME. Furthermore, silencing of PRAME reduced expression of several immune checkpoints and their ligands, including PD-1, LAG3, PD-L1, CD86, Gal-9 and VISTA. Interestingly, silencing of PRAME induced cancer cell killing to levels similar to anti-PD-L1 atezolizumab treatment. Comprehensive analysis of soluble inflammatory mediators and cancer cell expression of immune-related genes showed that PRAME tumour expression can suppress the expression and secretion of multiple pro-inflammatory cytokines, and mediators of T cell activation, differentiation and cytolysis. Together, our data indicate that targeting of PRAME offers a potential, novel dual therapeutic approach to specifically target tumour cells and regulate immune activation in the tumour microenvironment.
Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Imunomodulação/genética , Neoplasias/etiologia , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais , Quimiotaxia/genética , Quimiotaxia/imunologia , Biologia Computacional/métodos , Citocinas/metabolismo , Bases de Dados Genéticas , Gerenciamento Clínico , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Imunofenotipagem , Ativação Linfocitária/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Prognóstico , TranscriptomaRESUMO
Higher eukaryotic development is a complex and tightly regulated process, whereby transcription factors (TFs) play a key role in controlling the gene regulatory networks. Dysregulation of these regulatory networks has also been associated with carcinogenesis. Transcription factors are key enablers of cancer stemness, which support the maintenance and function of cancer stem cells that are believed to act as seeds for cancer initiation, progression and metastasis, and treatment resistance. One key area of research is to understand how these factors interact and collaborate to define cellular fate during embryogenesis as well as during tumor development. This review focuses on understanding the role of TFs in cell development and cancer. The molecular mechanisms of cell fate decision are of key importance in efforts towards developing better protocols for directed differentiation of cells in research and medicine. We also discuss the dysregulation of TFs and their role in cancer progression and metastasis, exploring TF networks as direct or indirect targets for therapeutic intervention, as well as specific TFs' potential as biomarkers for predicting and monitoring treatment responses.
RESUMO
The COVID-19 pandemic has affected all individuals across the globe in some way. Despite large numbers of reported seroprevalence studies, there remains a limited understanding of how the magnitude and epitope utilization of the humoral immune response to SARS-CoV-2 viral anti-gens varies within populations following natural infection. Here, we designed a quantitative, multi-epitope protein microarray comprising various nucleocapsid protein structural motifs, including two structural domains and three intrinsically disordered regions. Quantitative data from the microarray provided complete differentiation between cases and pre-pandemic controls (100% sensitivity and specificity) in a case-control cohort (n = 100). We then assessed the influence of disease severity, age, and ethnicity on the strength and breadth of the humoral response in a multi-ethnic cohort (n = 138). As expected, patients with severe disease showed significantly higher antibody titers and interestingly also had significantly broader epitope coverage. A significant increase in antibody titer and epitope coverage was observed with increasing age, in both mild and severe disease, which is promising for vaccine efficacy in older individuals. Additionally, we observed significant differences in the breadth and strength of the humoral immune response in relation to ethnicity, which may reflect differences in genetic and lifestyle factors. Furthermore, our data enabled localization of the immuno-dominant epitope to the C-terminal structural domain of the viral nucleocapsid protein in two independent cohorts. Overall, we have designed, validated, and tested an advanced serological assay that enables accurate quantitation of the humoral response post natural infection and that has revealed unexpected differences in the magnitude and epitope utilization within a population.
Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Antígenos Virais/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Teste Sorológico para COVID-19 , Estudos de Casos e Controles , Estudos de Coortes , Epitopos , Etnicidade , Feminino , Humanos , Imunidade Humoral , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/imunologia , Pandemias , SARS-CoV-2/genética , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Índice de Gravidade de Doença , Adulto JovemRESUMO
Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer associated with poor prognosis, early recurrence, and the lack of durable chemotherapy responses and specific targeted treatments. The recent FDA approval for immune checkpoint inhibition in combination with nab-paclitaxel for the treatment of metastatic TNBC created opportunity to advocate for immunotherapy in TNBC patients. However, improving the current low response rates is vital. Most cancers, including TNBC tumors, display metabolic plasticity and undergo reprogramming into highly glycolytic tumors through the Warburg effect. Consequently, accumulation of the metabolic byproduct lactate and extracellular acidification is often observed in several solid tumors, thereby exacerbating tumor cell proliferation, metastasis, and angiogenesis. In this review, we focus on the role of lactate acidosis in the microenvironment of glycolytic breast tumors as a major driver for immune evasion with a special emphasis on TNBCs. In particular, we will discuss the role of lactate regulators such as glucose transporters, lactate dehydrogenases, and lactate transporters in modulating immune functionality and checkpoint expression in numerous immune cell types. This review aims to spark discussion on interventions targeting lactate acidosis in combination with immunotherapy to provide an effective means of improving response to immune checkpoint inhibitors in TNBC, in addition to highlighting challenges that may arise from TNBC tumor heterogeneity.
RESUMO
Lactate dehydrogenase C (LDHC) is an archetypical cancer testis antigen with limited expression in adult tissues and re-expression in tumors. This restricted expression pattern together with the important role of LDHC in cancer metabolism renders LDHC a potential target for immunotherapy. This study is the first to investigate the immunogenicity of LDHC using T cells from healthy individuals. LDHC-specific T cell responses were induced by in vitro stimulation with synthetic peptides, or by priming with autologous peptide-pulsed dendritic cells. We evaluated T cell activation by IFN-γ ELISpot and determined cytolytic activity of HLA-A*0201-restricted T cells in breast cancer cell co-cultures. In vitro T cell stimulation induced IFN-γ secretion in response to numerous LDHC-derived peptides. Analysis of HLA-A*0201 responses revealed a significant T cell activation after stimulation with peptide pools 2 (PP2) and 8 (PP8). The PP2- and PP8-specific T cells displayed cytolytic activity against breast cancer cells with endogenous LDHC expression within a HLA-A*0201 context. We identified peptides LDHC41-55 and LDHC288-303 from PP2 and PP8 to elicit a functional cellular immune response. More specifically, we found an increase in IFN-γ secretion by CD8 + T cells and cancer-cell-killing of HLA-A*0201/LDHC positive breast cancer cells by LDHC41-55- and LDHC288-303-induced T cells, albeit with a possible antigen recognition threshold. The majority of induced T cells displayed an effector memory phenotype. To conclude, our findings support the rationale to assess LDHC as a targetable cancer testis antigen for immunotherapy, and in particular the HLA-A*0201 restricted LDHC41-55 and LDHC288-303 peptides within LDHC.
Assuntos
Epitopos de Linfócito T/imunologia , Antígeno HLA-A2/imunologia , Imunoterapia/métodos , L-Lactato Desidrogenase/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Isoenzimas/imunologia , MasculinoRESUMO
Cancer immunotherapy has been heralded as a breakthrough cancer treatment demonstrating tremendous success in improving tumor responses and survival of patients with hematological cancers and solid tumors. This novel promising treatment approach has in particular triggered optimism for triple negative breast cancer (TNBC) treatment, a subtype of breast cancer with distinct clinical features and poor clinical outcome. In early 2019, the FDA granted the first approval of immune checkpoint therapy, targeting PD-L1 (Atezolizumab) in combination with chemotherapy for the treatment of patients with locally advanced or metastatic PD-L1 positive TNBC. The efficacy of immuno-based interventions varies across cancer types and patient cohorts, which is attributed to a variety of lifestyle, clinical, and pathological factors. For instance, obesity has emerged as a risk factor for a dampened anti-tumor immune response and increased risk of immunotherapy-induced immune-related adverse events (irAEs) but has also been linked to improved outcomes with checkpoint blockade. Given the breadth of the rising global obesity epidemic, it is imperative to gain insight into the immunomodulatory effects of obesity in the peripheral circulation and within the tumor microenvironment. In this review, we resolve the impact of obesity on breast tumorigenesis and progression on the one hand, and on the immune contexture on the other hand. Finally, we speculate on the potential implications of obesity on immunotherapy response in breast cancer. This review clearly highlights the need for in vivo obese cancer models and representative clinical cohorts for evaluation of immunotherapy efficacy.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Obesidade/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Terapia Combinada , Feminino , Humanos , Imunoterapia/métodos , Obesidade/metabolismo , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismoRESUMO
Circulating proteins hold a potential benefit as biomarkers for precision medicine. Previously, we showed that systemic levels of neuropilin-1 (NRP-1) and its associated molecules correlated with poor-prognosis breast cancer. To further identify the role of NRP-1 and its interacting molecules in correspondence with patients' response to neoadjuvant chemotherapy (NAC), we conducted a comparative study on blood and tissue samples collected from a cohort of locally advanced breast cancer patients, before and after neoadjuvant chemotherapy (NAC). From a panel of tested proteins and genes, we found that the levels of plasma NRP-1, placenta growth factor (PlGF) and immune cell expression of the transcription factor SNAI1 before and after NAC were significantly different. Paired t-test analysis of 22 locally advanced breast cancer patients showed that plasma NRP-1 levels were increased significantly (p = 0.018) post-NAC in patients with pathological partial response (pPR). Kaplan-Meier analysis indicated that patients who received NAC cycles and their excised tumors remained with high levels of NRP-1 had a lower overall survival compared with patients whose tissue NRP-1 decreased post-NAC (log-rank p = 0.049). In vitro validation of the former result showed an increase in the secreted and cellular NRP-1 levels in resistant MDA-MB-231 cells to the most common NAC regimen Adriyamicin/cyclophosphamide+Paclitaxel (AC+PAC). In addition, NRP-1 knockdown in MDA-MB-231 cells sensitized the cells to AC and more profoundly to PAC treatment and the cells sensitivity was proportional to the expressed levels of NRP-1. Unlike NRP-1, circulating PlGF was significantly increased (p = 0.014) in patients with a pathological complete response (pCR). SNAI1 expression in immune cells showed a significant increase (p = 0.018) in patients with pCR, consistent with its posited protective role. We conclude that increased plasma and tissue NRP-1 post-NAC correlate with pPR and shorter overall survival, respectively. These observations support the need to consider anti-NRP-1 as a potential targeted therapy for breast cancer patients who are identified with high NRP-1 levels. Meanwhile, the increase in both PlGF and SNAI1 in pCR patients potentially suggests their antitumorigenic role in breast cancer that paves the way for further mechanistic investigation to validate their role as potential predictive markers for pCR in breast cancer.
RESUMO
BACKGROUND: The triple negative breast cancer (TNBC) paradox marks a major challenge in the treatment-decision making process. TNBC patients generally respond better to neoadjuvant chemotherapy compared to other breast cancer patients; however, they have a substantial higher risk of disease recurrence. We evaluated the expression of the tumor-associated antigen PReferentially Antigen expressed in MElanoma (PRAME) as a prognostic biomarker in breast cancer and explored its role in cell migration and invasion, key hallmarks of progressive and metastatic disease. METHODS: TCGA and GTeX datasets were interrogated to assess the expression of PRAME in relation to overall and disease-free survival. The role of PRAME in cell migration and invasion was investigated using gain- and loss-of-function TNBC cell line models. RESULTS: We show that PRAME promotes migration and invasion of TNBC cells through changes in expression of E-cadherin, N-cadherin, vimentin and ZEB1, core markers of an epithelial-to-mesenchymal transition. Mechanistic analysis of PRAME-overexpressing cells showed an upregulation of 11 genes (SNAI1, TCF4, TWIST1, FOXC2, IL1RN, MMP2, SOX10, WNT11, MMP3, PDGFRB, and JAG1) and downregulation of 2 genes (BMP7 and TSPAN13). Gene ontology analyses revealed enrichment of genes that are dysregulated in ovarian and esophageal cancer and are involved in transcription and apoptosis. In line with this, interrogation of TCGA and GTEx data demonstrated an increased PRAME expression in ovarian and esophageal tumor tissues in addition to breast tumors where it is associated with worse survival. CONCLUSIONS: Our findings indicate that PRAME plays a tumor-promoting role in triple negative breast cancer by increasing cancer cell motility through EMT-gene reprogramming. Therefore, PRAME could serve as a prognostic biomarker and/or therapeutic target in TNBC.
Assuntos
Antígenos de Neoplasias/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Antígenos de Neoplasias/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Invasividade Neoplásica , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/genéticaRESUMO
BACKGROUND: Neuropilin-1 (NRP-1), a non-tyrosine kinase glycoprotein receptor, is associated with poor prognosis breast cancer, however transcriptomic changes triggered by NRP-1 overexpression and its association with chemoresistance in breast cancer have not yet been explored. METHODS: BT-474 NRP-1 variant cells were generated by stable overexpression of NRP-1 in the BT-474 breast cancer cell line. RNA sequencing and qRT-PCR were conducted to identify differentially expressed genes. The role of an upregulated oncogene, Tenascin C (TNC) and its associated pathway was investigated by siRNA-mediated knockdown. Resistant variants of the control and BT-474 NRP-1 cells were generated by sequential treatment with four cycles of Adriamycin/Cyclophosphamide (4xAC) followed by four cycles of Paclitaxel (4xAC + 4xPAC). RESULTS: NRP-1 overexpression increased cellular tumorigenic behavior. RNA sequencing identified upregulation of an oncogene, Tenascin-C (TNC) and downregulation of several tumor suppressors in BT-474 NRP-1 cells. Additionally, protein analysis indicated activation of the TNC-associated integrin ß3 (ITGB3) pathway via focal adhesion kinase (FAK), Akt (Ser473) and nuclear factor kappa B (NF-kB) p65. siRNA-mediated TNC knockdown ablated the migratory capacity of BT-474 NRP-1 cells and inactivated FAK/Akt473 signaling. NRP-1 overexpressing cells downregulated breast cancer resistance protein (BCRP/ABCG2). Consequently, sequential treatment with Adriamycin/Cyclophosphamide (AC) cytotoxic drugs to generate resistant cells indicated that BT-474 NRP-1 cells increased sensitivity to treatment by inactivating NRP-1/ITGB3/FAK/Akt/NF-kB p65 signaling compared to wild-type BT-474 resistant cells. CONCLUSIONS: We thus report a novel mechanism correlating high baseline NRP-1 with upregulated TNC/ITGB3 signaling, but decreased ABCG2 expression, which sensitizes BT-474 NRP-1 cells to Adriamycin/Cyclophosphamide. The study emphasizes on the targetability of the NRP-1/ITGB3 axis and its potential as a predictive biomarker for chemotherapy response.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Neuropilina-1/metabolismo , Transdução de Sinais/genética , Tenascina/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Integrina beta3/metabolismo , Células MCF-7 , Proteínas de Neoplasias/metabolismo , Neuropilina-1/genética , Oncogenes , RNA Interferente Pequeno , Regulação para CimaRESUMO
Circulating plasma and peripheral blood mononuclear (PBMCs) cells provide an informative snapshot of the systemic physiological state. Moreover, they provide a non-invasively accessible compartment to identify biomarkers for personalized medicine in advanced breast cancer. The role of Neuropilin-1 (NRP-1) and its interacting molecules in breast tumor tissue was correlated with cancer progression; however, the clinical impact of their systemic levels was not extensively evaluated. In this cross-sectional study, we found that circulating and tumor tissue expression of NRP-1 and circulating placental growth factor (PlGF) increase in advanced nodal and metastatic breast cancer compared with locally advanced disease. Tumor tissue expression of NRP-1 and PlGF is also upregulated in triple negative breast cancer (TNBC) compared to other subtypes. Conversely, in PBMCs, NRP-1 and its interacting molecules SEMA4A and SNAI1 are significantly downregulated in breast cancer patients compared to healthy controls, indicating a protective role. Moreover, we report differential PBMC expression profiles that correlate inversely with disease stage (SEMA4A, SNAI1, PLXNA1 and VEGFR3) and can differentiate between the TNBC and non-TNBC tumor subtypes (VEGFR3 and PLXNA1). This work supports the importance of NRP-1-associated molecules in circulation to characterize poor prognosis breast cancer and emphasizes on their role as favorable drug targets.
Assuntos
Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Neuropilina-1/sangue , Adulto , Idoso , Neoplasias da Mama/genética , Estudos de Coortes , Estudos Transversais , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Leucócitos Mononucleares/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Fator de Crescimento Placentário/sangue , Prognóstico , Carga Tumoral , Regulação para Cima , Adulto JovemRESUMO
Current state-of-the-art mathematical models to investigate complex biological processes, in particular liver-associated pathologies, have limited expansiveness, flexibility, representation of integrated regulation and rely on the availability of detailed kinetic data. We generated the SteatoNet, a multi-pathway, multi-tissue model and in silico platform to investigate hepatic metabolism and its associated deregulations. SteatoNet is based on object-oriented modelling, an approach most commonly applied in automotive and process industries, whereby individual objects correspond to functional entities. Objects were compiled to feature two novel hepatic modelling aspects: the interaction of hepatic metabolic pathways with extra-hepatic tissues and the inclusion of transcriptional and post-transcriptional regulation. SteatoNet identification at normalised steady state circumvents the need for constraining kinetic parameters. Validation and identification of flux disturbances that have been proven experimentally in liver patients and animal models highlights the ability of SteatoNet to effectively describe biological behaviour. SteatoNet identifies crucial pathway branches (transport of glucose, lipids and ketone bodies) where changes in flux distribution drive the healthy liver towards hepatic steatosis, the primary stage of non-alcoholic fatty liver disease. Cholesterol metabolism and its transcription regulators are highlighted as novel steatosis factors. SteatoNet thus serves as an intuitive in silico platform to identify systemic changes associated with complex hepatic metabolic disorders.
Assuntos
Biologia Computacional/métodos , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Modelos Biológicos , Software , Tecido Adiposo/metabolismo , Simulação por Computador , Bases de Dados Factuais , Humanos , Internet , Reprodutibilidade dos TestesRESUMO
Non-alcoholic fatty liver disease (NAFLD) is the most predominant liver disease worldwide and hepatic manifestation of the metabolic syndrome. Its histology spectrum ranges from steatosis, to steatohepatitis (NASH) that can further progress to cirrhosis and hepatocellular carcinoma (HCC). The increasing incidence of NAFLD has contributed to rising numbers of HCC occurrences. NAFLD progression is governed by genetic susceptibility, environmental factors, lifestyle and features of the metabolic syndrome, many of which overlap with HCC. Gene expression profiling and genome wide association studies have identified novel disease pathways and polymorphisms in genes that may be potential biomarkers of NAFLD progression. However, the multifactorial nature of NAFLD and the limited number of sufficiently powered studies are among the current limitations for validated biomarkers of clinical utility. Further studies incorporating the links between circadian regulation and hepatic metabolism might represent an additional direction in the search for predictive biomarkers of liver disease progression and treatment outcomes.
Assuntos
Carcinoma Hepatocelular/genética , Fígado Gorduroso/genética , Genômica , Animais , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/patologia , Progressão da Doença , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Estudos de Associação Genética , Humanos , Estilo de Vida , Cirrose Hepática/complicações , Cirrose Hepática/epidemiologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não AlcoólicaRESUMO
Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, is a complex multifactorial disease characterized by metabolic deregulations that include accumulation of lipids in the liver, lipotoxicity, and insulin resistance. The progression of NAFLD to non-alcoholic steatohepatitis and cirrhosis, and ultimately to carcinomas, is governed by interplay of pro-inflammatory pathways, oxidative stress, as well as fibrogenic and apoptotic cues. As the liver is the major organ of biotransformation, deregulations in hepatic signaling pathways have effects on both, xenobiotic and endobiotic metabolism. Several major nuclear receptors involved in the transcription and regulation of phase I and II drug metabolizing enzymes and transporters also have endobiotic ligands including several lipids. Hence, hepatic lipid accumulation in steatosis and NAFLD, which leads to deregulated activation patterns of nuclear receptors, may result in altered drug metabolism capacity in NAFLD patients. On the other hand, genetic and association studies have indicated that a malfunction in drug metabolism can affect the prevalence and severity of NAFLD. This review focuses on the complex interplay between NAFLD pathogenesis and drug metabolism. A better understanding of these relationships is a prerequisite for developing improved drug dosing algorithms for the pharmacotherapy of patients with different stages of NAFLD.