Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 952: 175821, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37263404

RESUMO

Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disorder characterized by abnormal accumulation of extracellular ß-amyloid (Aß) plaques and neuronal damage. Although AD is typically considered a cognitive neurodegenerative disorder, almost all people diagnosed with AD develop neuropsychiatric complications at some stage in their life span. The present study investigated the effect of chronic Nattokinase (NK) administration on ß-Amyloid peptide (Aß1-42) induced neuropsychiatric conditions (depression-like behaviour, anxiety, and memory impairment) in mice. Aß1-42 peptide injected mice demonstrated depression, anxiety, and impairment of cognitive abilities evaluated as increased immobility time in forced swim test (FST), decreased open arm time/entries in elevated plus maze (EPM) and reference and working memory error in radial arm maze (RAM) respectively with elevation in Interleukin-6 (IL-6), Tumour necrosis factor-α (TNF-α), reduction in Interleukin-10 (IL-10) and Brain-derived neurotrophic factor (BDNF) immunocontent within the hippocampus. Chronic administration of NK (50-100 mg/kg, i.p.) from day 8-27, prevented depression-like behaviour, anxiety, and memory impairment and normalized the neurochemical alteration within the hippocampus of mice injected with Aß1-42 peptide. The effect of NK on psychiatric complications, learning, and memory was comparable to peripheral donepezil treatment. This study suggests that NK improves learning, memory impairment, and neuropsychiatric complications possibly through the downregulation of neuroinflammatory pathways and restoring BDNF signalling in AD.


Assuntos
Doença de Alzheimer , Fator Neurotrófico Derivado do Encéfalo , Subtilisinas , Animais , Camundongos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Hipocampo , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Doenças Neuroinflamatórias , Fragmentos de Peptídeos/farmacologia , Subtilisinas/uso terapêutico
2.
J Control Release ; 348: 456-469, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35691502

RESUMO

Intensive research subjected to the improvement of solubility and bioavailability of certain drugs has popularized the formation of cocrystals, wherein the desired drug is non-ionically bonded to a coformer by means of weak bonds. This paper addresses how crystal engineering of two compatible drug components can enhance the physicochemical and therapeutic properties of either or both of the drugs, resulting in drug-drug cocrystals, with pertinent examples. The paper also discusses the continuous screening processes which are replacing the traditional methods of crystallization due to numerous benefits to the producer as well as the products. Although faced with certain regulatory and scale-up constraints, cocrystals provide immense opportunities to the field of novel drug development.


Assuntos
Cristalização , Disponibilidade Biológica , Cristalização/métodos , Solubilidade
3.
J Control Release ; 343: 13-30, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35026351

RESUMO

Understanding the composition and function of the blood brain barrier (BBB) enables the development of novel, innovative techniques for administering central nervous system (CNS) medications and technologies for improving the existing models. Scientific and methodological interest in the pathology of the BBB resulted in the formation of numerous in vitro BBB models. Once successfully studied and modelled, it would be a valuable tool for elucidating the mechanism of action of the CNS disorders prior to their manifestation and the pathogenic factors. Understanding the rationale behind the selection of the models as well as their working may enable the development of state-of-the-art drugs for treating and managing neurological diseases. Hence, to have realistic simulation of the BBB and test its drug permeability the microfluidics-based BBB-on-Chip model has been developed. To summarise, we aim to evaluate the advanced, newly developed and frequently used in vitro BBB models, thereby providing a brief overview of the components essential for in vitro BBB formation, the methods of chip fabrication and cell culturing, its applications and the recent advances in this technological field. This will be critical for developing CNS treatments with improved BBB penetrability and pharmacokinetic properties.


Assuntos
Barreira Hematoencefálica , Doenças do Sistema Nervoso Central , Transporte Biológico , Encéfalo , Fármacos do Sistema Nervoso Central , Humanos , Modelos Biológicos
4.
Phytomedicine ; 85: 153286, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32741697

RESUMO

BACKGROUND: The rapid spread of novel coronavirus called SARS-CoV-2 or nCoV has caused countries all over the world to impose lockdowns and undertake stringent preventive measures. This new positive-sense single-stranded RNA strain of coronavirus spreads through droplets of saliva and nasal discharge. PURPOSE: US FDA has authorized the emergency use of Remdesivir looking at the increasing number of cases of COVID-19, however there is still no drug approved to treat COVID-19. An alternative way of treatment could be the use of naturally derived molecules with known antiviral properties. METHOD: We reviewed the antiviral activities of two polyphenols derived from tea, epigallocatechin-3-gallate (EGCG) from green tea and theaflavins from black tea. Both green tea and black tea polyphenols have been reported to exhibit antiviral activities against various viruses, especially positive-sense single-stranded RNA viruses. RESULTS: Recent studies have revealed the possible binding sites present on SARS-CoV-2 and studied their interactions with tea polyphenols. EGCG and theaflavins, especially theaflavin-3,3'-digallate (TF3) have shown a significant interaction with the receptors under consideration in this review. Some docking studies further emphasize on the activity of these polyphenols against COVID-19. CONCLUSION: This review summarizes the available reports and evidences which support the use of tea polyphenols as potential candidates in prophylaxis and treatment of COVID-19.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Polifenóis/farmacologia , SARS-CoV-2/efeitos dos fármacos , Chá/química , Antioxidantes/farmacologia , Biflavonoides/farmacologia , Sítios de Ligação , Camellia sinensis/química , Catequina/análogos & derivados , Catequina/farmacologia , Humanos
5.
Comput Biol Med ; 129: 104137, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33302163

RESUMO

BACKGROUND: COVID-19 is an infectious disease caused by a novel positive-sense single-stranded RNA coronavirus called as SARS-CoV-2. This viral disease is known to infect the respiratory system, eventually leading to pneumonia. Crystallographic studies of the viral structure reveal its mechanism of infection as well as active binding sites and the druggable targets as scope for treatment of COVID-19. HYPOTHESIS: The role of tea polyphenols in prophylaxis and treatment of COVID-19 was established in this study. STUDY DESIGN: Molecular docking interactions of tea polyphenols with some of the possible binding sites of SARS-CoV-2 were performed. MATERIALS AND METHODS: From various studies on the SARS-CoV-2 reported in the literature, we chose possible drug targets (Chymotrypsin-like protease, RNA dependant RNA polymerase, Papain like protease, Spike RBD and ACE2 receptor with spike RBD) which are vital proteins. These receptors were docked against two tea polyphenols, Epigallocatechin gallate (EGCG) from green tea and Theaflavin digallate (TF3) from black tea. These polyphenols have been previously reviewed for their antiviral activities, especially against single-stranded RNA viruses. Two antiviral drugs, Remdesivir and Favipiravir were studied for comparative docking results. RESULTS: A comparative study of docking scores and the type of interactions of EGCG, TF3 with the possible targets of COVID-19 showed that the tea polyphenols had good docking scores with significant in-silico activity. CONCLUSION: These results can provide a lead in exploring both the tea polyphenols in prophylaxis as well as treatment of COVID-19.


Assuntos
Antivirais/química , Biflavonoides/química , Catequina/análogos & derivados , Ácido Gálico/análogos & derivados , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Biflavonoides/farmacologia , Sítios de Ligação , Catequina/química , Catequina/farmacologia , Ácido Gálico/química , Ácido Gálico/farmacologia , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA