RESUMO
Thrombosis, a key factor in most cardiovascular diseases, is a major contributor to human mortality. Existing antithrombotic agents carry a risk of bleeding. Consequently, there is a keen interest in discovering innovative antithrombotic agents that can prevent thrombosis without negatively impacting hemostasis. Platelets play crucial roles in both hemostasis and thrombosis. We have previously characterized calcium- and integrin-binding protein 1 (CIB1) as a key regulatory molecule that regulates platelet function. CIB1 interacts with several platelet proteins including integrin αIIbß3, the major glycoprotein receptor for fibrinogen on platelets. Given that CIB1 regulates platelet function through its interaction with αIIbß3, we developed a fluorescence polarization (FP) assay to screen for potential inhibitors. The assay was miniaturized to 1536-well and screened in quantitative high-throughput screening (qHTS) format against a diverse compound library of 14,782 compounds. After validation and selectivity testing using the FP assay, we identified 19 candidate inhibitors and validated them using an in-gel binding assay that monitors the interaction of CIB1 with αIIb cytoplasmic tail peptide, followed by testing of top hits by intrinsic tryptophan fluorescence (ITF) and microscale thermophoresis (MST) to ascertain their interaction with CIB1. Two of the validated hits shared similar chemical structures, suggesting a common mechanism of action. Docking studies further revealed promising interactions within the hydrophobic binding pocket of the target protein, particularly forming key hydrogen bonds with Ser180. The compounds exhibited a potent antiplatelet activity based on their inhibition of thrombin-induced human platelet aggregation, thus indicating that disruptors of the CIB1- αIIbß3 interaction could carry a translational potential as antithrombotic agents.
RESUMO
Bi-directional signaling through platelet integrin αIIbß3 is essential in hemostasis and thrombosis. In quiescent platelets αIIbß3 is in a low-affinity ligand binding state. However, upon platelet activation by agonists through inside-out signaling, a rapid switch in the conformation of the integrin results in a high affinity ligand binding state capable of binding soluble fibrinogen. Ligand binding to the αIIbß3 induces a signaling termed outside-in signaling that regulate platelet spreading and clot retraction. These events are often interchangeably used to represent outside-in signaling pathway. Using pharmacological inhibitors of known signaling molecules that have been implicated to regulate outside-in signaling, we assessed human platelet spreading and clot retraction. We found that inhibition of PI3K, PLC, PKC, and FAK strongly attenuated both platelet spreading and clot retraction suggesting that they are essential for both clot retraction and platelet spreading. Whereas inhibition of Rac1, ROCK, p38, and MEK did not affect platelet spreading but significantly delayed clot retraction suggesting that these signaling molecules do not participate in platelet spreading. Interestingly, Src family kinases (SFKs) are required for platelet spreading and FAK activation but suppresses clot retraction since their inhibition causes faster clot retraction. Thus, it becomes evident that platelet spreading, and clot retraction are differently regulated through αIIbß3 outside-in signaling and should not be used interchangeably as readout for αIIbß3 outside-in signaling assessment. Significance Statement Current anti-platelet drugs have increased risk of bleeding and low efficacy. There is an increased effort to identify novel anti-platelet agents that have improved efficacy with reduced risk of bleeding. It is increasingly felt that inhibition of αIIbß3-induced outside-in signaling may inhibit thrombosis without compromising hemostasis. However, the signaling entities regulating outside-in signaling is poorly understood. Our work included in this manuscript delineates the distinct signaling pathways involved in outside-in signaling and identify potential novel targets for intervention of thrombosis.
RESUMO
Two of the most prevalent neurodegenerative disorders (NDDs), Alzheimer's disease (AD) and Parkinson's disease (PD), present significant challenges to healthcare systems worldwide. While the etiologies of AD and PD differ, both diseases share commonalities in synaptic dysfunction, thereby focusing attention on the role of neurotransmitters. The possible functions that platelets may play in neurodegenerative illnesses including PD and AD are becoming more acknowledged. In AD, platelets have been investigated for their ability to generate amyloid-ß (Aß) peptides, contributing to the formation of neurotoxic plaques. Moreover, platelets are considered biomarkers for early AD diagnosis. In PD, platelets have been studied for their involvement in oxidative stress and mitochondrial dysfunction, which are key factors in the disease's pathogenesis. Emerging research shows that platelets, which release glutamate upon activation, also play a role in these disorders. Decreased glutamate uptake in platelets has been observed in Alzheimer's and Parkinson's patients, pointing to a systemic dysfunction in glutamate handling. This paper aims to elucidate the critical role that glutamate receptors play in the pathophysiology of both AD and PD. Utilizing data from clinical trials, animal models, and cellular studies, we reviewed how glutamate receptors dysfunction contributes to neurodegenerative (ND) processes such as excitotoxicity, synaptic loss, and cognitive impairment. The paper also reviews all current medications including glutamate receptor antagonists for AD and PD, highlighting their mode of action and limitations. A deeper understanding of glutamate receptor involvement including its systemic regulation by platelets could open new avenues for more effective treatments, potentially slowing disease progression and improving patient outcomes.
Assuntos
Doença de Alzheimer , Doença de Parkinson , Animais , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Doença de Alzheimer/patologia , Ácido Glutâmico , Receptores de GlutamatoRESUMO
These illustrated capsules have been prepared by some speakers of State-of-the-Art talks and of original investigations, presented at the 5th European Platelet Network (EUPLAN) International Conference, which was held at the Università degli Studi di Milano (Italy) on September 28-30, 2022. The programme featured various state-of-the-art lectures and a selection of oral presentations covering a broad range of topics in platelet and megakaryocyte biology, from basic science to recent advances in clinical studies. As usual, the meeting brought together senior scientists and trainees in an informal atmosphere to discuss platelet science in person.
RESUMO
Apoptosis signal-regulating kinase 1 (ASK1) is a serine-threonine kinase that is ubiquitously expressed in nucleated cells and is responsible for the activation of multiple mitogen-activated protein kinases (MAPK) to regulate cell stress. Activation of ASK1 via cellular stress leads to activation of downstream signaling components, activation of transcription factors, and proinflammatory cytokine production. ASK1 is also expressed in anucleate platelets and is a key player in platelet activation as it is important for signaling. Interestingly, the mechanism of ASK1 activation is cell type-dependent. In this review we will explore how ASK1 regulates a variety of cellular processes from innate immune function to thrombosis and hemostasis. We will discuss how ASK1 influences FcγRIIA-mediated platelet reactivity and how that reactivity drives platelet clearance. Furthermore, we will explore the role of ASK1 in thromboxane (TxA2) generation, which highlights differences in the way ASK1 functions in mouse and human platelets.
Assuntos
MAP Quinase Quinase Quinase 5 , Sepse , Humanos , Animais , Camundongos , Plaquetas , Cinética , Proteínas Quinases Ativadas por MitógenoRESUMO
Thrombin-induced endothelial permeability is associated with various pathological conditions. Apoptosis signal-regulating kinase-1 (ASK1), one of the upstream MAP3K, has been reported to be an important regulator of endothelial stress and apoptosis. Despite this, its role in endothelial permeability is unknown. The aim of this study was to determine the role of ASK1 in thrombin-induced endothelial permeability. To do so, a live cell monitoring system and transwell assay were used to evaluate in vitro endothelial permeability, while a Miles assay was used for in vivo permeability. Immunofluorescence and western blotting were used to visualize integrity of the junctions and phosphorylation of various proteins, respectively. We observed that in vivo thrombin-induced vascular permeability was attenuated in Ask1-/- mice. Pretreatment of human primary endothelial cells (ECs) with GS-4997 (ASK1 inhibitor) and deficiency of ASK1 in primary mouse lung ECs significantly attenuated the thrombin-induced endothelial permeability. Furthermore, in the presence of GS-4997, the following were also significantly reduced: thrombin-induced para-cellular gap formation, VE-cadherin proteolysis, and dislocation of VE-cadherin, JAM-A, and ZO1 from the junctions. Inhibition of ASK1 restored peripheral location of F-actin, similar to that induced by sphingosine-1-phosphate. These results suggest a unique role for ASK1 in regulating thrombin-induced endothelial permeability.
Assuntos
Células Endoteliais , MAP Quinase Quinase Quinase 5 , Trombina , Actinas/metabolismo , Animais , Apoptose , Caderinas/metabolismo , Permeabilidade Capilar , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , MAP Quinase Quinase Quinase 5/metabolismo , Camundongos , Permeabilidade , Trombina/metabolismo , Trombina/farmacologiaRESUMO
Cross talk between glia and neurons is crucial for a variety of biological functions, ranging from nervous system development, axonal conduction, synaptic transmission, neural circuit maturation, to homeostasis maintenance. Extracellular vesicles (EVs), which were initially described as cellular debris and were devoid of biological function, are now recognized as key components in cell-cell communication and play a critical role in glia-neuron communication. EVs transport the proteins, lipids, and nucleic acid cargo in intercellular communication, which alters target cells structurally and functionally. A better understanding of the roles of EVs in glia-neuron communication, both in physiological and pathological conditions, can aid in the discovery of novel therapeutic targets and the development of new biomarkers. This review aims to demonstrate that different types of glia and neuronal cells secrete various types of EVs, resulting in specific functions in intercellular communications.
RESUMO
Background The impairment of the inner blood-retinal barrier (iBRB) increases the pathological development of diabetic retinopathy (DR), a severe complication in diabetic patients. Identifying approaches to preserving iBRB integrity and function is a significant challenge in DR. C1q/tumor necrosis factor-related protein-3 (CTRP3) is a newly discovered adipokine and a vital biomarker, predicting DR severity. We sought to determine whether and how CTRP3 affects the pathological development of non-proliferative diabetic retinopathy (NPDR). Methods To clarify the pathophysiologic progress of the blood-retinal barrier in NPDR and explore its potential mechanism, a mouse Type 2 diabetic model of diabetic retinopathy was used. The capillary leakage was assessed by confocal microscope with fluorescent-labeled protein in vivo. Furthermore, the effect of CTRP3 on the inner blood-retinal barrier (iBRB) and its molecular mechanism was clarified. Results The results demonstrated that CTRP3 protects iBRB integrity and resists the vascular permeability induced by DR. Mechanistically, the administration of CTRP3 activates the AMPK signaling pathway and enhances the expression of Occludin and Claudin-5 (tight junction protein) in vivo and in vitro. Meanwhile, CTRP3 improves the injury of human retinal endothelial cells (HRMECs) induced by high glucose/high lipids (HG/HL), and its protective effects are AMPK-dependent. Conclusions In summary, we report, for the first time, that CTRP3 prevents diabetes-induced retinal vascular permeability via stabilizing the tight junctions of the iBRB and through the AMPK-dependent Occludin/Claudin-5 signaling pathway, thus critically affecting the development of NPDR.
Assuntos
Diabetes Mellitus , Retinopatia Diabética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Barreira Hematorretiniana , Claudina-5 , Complemento C1q/metabolismo , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Humanos , Camundongos , Ocludina , Junções Íntimas/metabolismoRESUMO
Ischemic stroke is a leading cause of morbidity and mortality worldwide and, despite reperfusion either via thrombolysis or thrombectomy, stroke patients often suffer from lifelong disabilities. These persistent neurological deficits may be improved by treating the ischemia/reperfusion (I/R) injury that occurs following ischemic stroke. There are currently no approved therapies to treat I/R injury, and thus it is imperative to find new targets to decrease the burden of ischemic stroke and related diseases. Platelets, cell fragments from megakaryocytes, are primarily known for their role in hemostasis. More recently, investigators have studied the nonhemostatic role of platelets in inflammatory pathologies, such as I/R injury after ischemic stroke. In this review, we seek to provide an overview of how I/R can lead to platelet activation and how activated platelets, in turn, can exacerbate I/R injury after stroke. We will also discuss potential mechanisms by which platelets may ameliorate I/R injury.
Assuntos
Traumatismo por Reperfusão , Acidente Vascular Cerebral , Plaquetas , Humanos , Isquemia , Ativação PlaquetáriaRESUMO
Sepsis and autoimmune diseases remain major causes of morbidity and mortality. The last decade has seen a new appreciation of platelets in host defense, in both immunity and thrombosis. Platelets are first responders in the blood to microbes or non-microbial antigens. The role of platelets in physiologic immunity is counterbalanced by their role in pathology, for example, microvascular thrombosis. Platelets encounter microbes and antigens via both innate and adaptive immune processes; platelets also help to shape the subsequent adaptive response. FcγRIIA is a receptor for immune complexes opsonized by IgG or pentraxins, and expressed in humans by platelets, granulocytes, monocytes and macrophages. With consideration of the roles of IgG and Fc receptors, the host response to microbes and autoantigens can be called adaptive immunothrombosis. Here we review newer developments involving platelet FcγRIIA in humans and humanized mice in immunity and thrombosis, with special attention to heparin-induced thrombocytopenia, systemic lupus erythematosus, and bacterial sepsis. Human genetic diversity in platelet receptors and the utility of humanized mouse models are highlighted.
Assuntos
Plaquetas , Trombose , Animais , Camundongos , Camundongos Transgênicos , Ativação Plaquetária , Receptores de IgGRESUMO
BACKGROUND: Immune complexes (ICs) bind to and activate platelets via FcγRIIA, causing patients to experience thrombocytopenia, as well as an increased risk of forming occlusive thrombi. Although platelets have been shown to mediate IC-induced pathologies, the mechanisms involved have yet to be fully elucidated. We identified that apoptosis signal-regulating kinase 1 (ASK1) is present in both human and mouse platelets and potentiates many platelet functions. OBJECTIVES: Here we set out to study ASK1's role in regulating IC-mediated platelet functions in vitro and IC-induced pathologies using an in vivo mouse model. METHODS: Using human platelets treated with an ASK1-specific inhibitor and platelets from FCGR2A/Ask1-/- transgenic mice, we examined various platelet functions induced by model ICs in vitro and in vivo. RESULTS: We found that ASK1 was activated in human platelets following cross-linking of FcγRIIA using either anti-hCD9 or IV.3 + goat-anti-mouse. Although genetic deletion or inhibition of ASK1 significantly attenuated anti-CD9-induced platelet aggregation, activation of the canonical FcγRIIA signaling targets Syk and PLCγ2 was unaffected. We further found that anti-mCD9-induced cPla2 phosphorylation and TxA2 generation is delayed in Ask1 null transgenic mouse platelets leading to diminished δ-granule secretion. In vivo, absence of Ask1 protected FCGR2A transgenic mice from thrombocytopenia, thrombosis, and systemic shock following injection of anti-mCD9. In whole blood microfluidics, platelet adhesion and thrombus formation on fibrinogen was enhanced by Ask1. CONCLUSIONS: These findings suggest that ASK1 inhibition may be a potential target for the treatment of IC-induced shock and other immune-mediated thrombotic disorders.
Assuntos
Trombocitopenia , Trombose , Animais , Apoptose , Plaquetas , Humanos , MAP Quinase Quinase Quinase 5/genética , Camundongos , Ativação Plaquetária , Agregação Plaquetária , Trombocitopenia/genética , Trombose/genéticaRESUMO
Tight junction (TJ) proteins are essential for mediating interactions between adjacent cells and coordinating cellular and organ responses. Initial investigations into TJ proteins and junctional adhesion molecules (JAM) in cancer suggested a tumor-suppressive role where decreased expression led to increased metastasis. However, recent studies of the JAM family members JAM-A and JAM-C have expanded the roles of these proteins to include protumorigenic functions, including inhibition of apoptosis and promotion of proliferation, cancer stem cell biology, and epithelial-to-mesenchymal transition. JAM function by interacting with other proteins through three distinct molecular mechanisms: direct cell-cell interaction on adjacent cells, stabilization of adjacent cell surface receptors on the same cell, and interactions between JAM and cell surface receptors expressed on adjacent cells. Collectively, these diverse interactions contribute to both the pro- and antitumorigenic functions of JAM. In this review, we discuss these context-dependent functions of JAM in a variety of cancers and highlight key areas that remain poorly understood, including their potentially diverse intracellular signaling networks, their roles in the tumor microenvironment, and the consequences of posttranslational modifications on their function. These studies have implications in furthering our understanding of JAM in cancer and provide a paradigm for exploring additional roles of TJ proteins.
Assuntos
Comunicação Celular/fisiologia , Progressão da Doença , Molécula A de Adesão Juncional/fisiologia , Molécula C de Adesão Juncional/fisiologia , Neoplasias/etiologia , Neoplasias/patologia , Apoptose/fisiologia , Neoplasias da Mama/etiologia , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Humanos , Molécula A de Adesão Juncional/química , Moléculas de Adesão Juncional/química , Moléculas de Adesão Juncional/fisiologia , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/fisiopatologia , Receptor ErbB-2/metabolismo , Relação Estrutura-Atividade , Junções Íntimas , Microambiente Tumoral/imunologia , Proteínas Supressoras de Tumor/fisiologiaRESUMO
The existence of mitogen activated protein kinases (MAPKs) in platelets has been known for more than 20 years. Since that time hundreds of reports have been published describing the conditions that cause MAPK activation in platelets and their role in regulating diverse platelet functions from the molecular to physiological level. However, this cacophony of reports, with inconsistent and sometimes contradictory findings, has muddied the waters leading to great confusion. Since the last review of platelet MAPKs was published more than a decade ago, there have been more than 50 reports, including the description of novel knockout mouse models, that have furthered our knowledge. Therefore, we undertook an extensive literature review to delineate what is known about platelet MAPKs. We specifically discuss what is currently known about how MAPKs are activated and what signaling cascades they regulate in platelets incorporating recent findings from knockout mouse models. In addition, we will discuss the role each MAPK plays in regulating distinct platelet functions. In doing so, we hope to clarify the role for MAPKs and identify knowledge gaps in this field that await future researchers. In addition, we discuss the limitations of current studies with a particular focus on the off-target effects of commonly used MAPK inhibitors. We conclude with a look at the clinical utility of MAPK inhibitors as potential antithrombotic therapies with an analysis of current clinical trial data.
Assuntos
Plaquetas , Proteínas Quinases Ativadas por Mitógeno , Animais , Plaquetas/metabolismo , Hemostasia , Camundongos , Camundongos Knockout , Transdução de SinaisRESUMO
BACKGROUND: Glioblastoma (GBM) is the most aggressive primary brain tumor and has a dismal prognosis. Previously, we identified that junctional adhesion molecule A (JAM-A), a cell adhesion molecule, is highly elevated in human GBM cancer stem cells and predicts poor patient prognosis. While JAM-A is also highly expressed in other cells in the tumor microenvironment, specifically microglia and macrophages, how JAM-A expression in these cells affects tumor growth has yet to be determined. The goal of this study was to understand the role of microenvironmental JAM-A in mediating GBM growth. METHODS: Male and female wild-type (WT) and JAM-A-deficient mice were transplanted intracranially with the syngeneic glioma cell lines GL261 and SB28 and were assessed for differences in survival and microglial activation in tumors and in vitro. RNA-sequencing was performed to identify differentially regulated genes among all genotypes, and differences were validated in vitro and in vivo. RESULTS: We found that JAM-A-deficient female mice succumbed to GBM more quickly compared with WT females and JAM-A-deficient and male WT mice. Analysis of microglia in the tumors revealed that female JAM-A-deficient microglia were more activated, and RNA-sequencing identified elevated expression of Fizz1 and Ifi202b specifically in JAM-A-deficient female microglia. CONCLUSIONS: Our findings suggest that JAM-A functions to suppress pathogenic microglial activation in the female tumor microenvironment, highlighting an emerging role for sex differences in the GBM microenvironment and suggesting that sex differences extend beyond previously reported tumor cell-intrinsic differences.
Assuntos
Glioblastoma , Animais , Linhagem Celular Tumoral , Feminino , Glioblastoma/genética , Humanos , Molécula A de Adesão Juncional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia , Microambiente TumoralRESUMO
G protein-coupled receptors (GPCRs) mediate the majority of platelet activation in response to agonists. However, questions remain regarding the mechanisms that provide negative feedback toward activated GPCRs to limit platelet activation and thrombus formation. Here we provide the first evidence that GPCR kinase 6 (GRK6) serves this role in platelets, using GRK6-/- mice generated by CRISPR-Cas9 genome editing to examine the consequences of GRK6 knockout on GPCR-dependent signaling. Hemostatic thrombi formed in GRK6-/- mice are larger than in wild-type (WT) controls during the early stages of thrombus formation, with a rapid increase in platelet accumulation at the site of injury. GRK6-/- platelets have increased platelet activation, but in an agonist-selective manner. Responses to PAR4 agonist or adenosine 5'-diphosphate stimulation in GRK6-/- platelets are increased compared with WT littermates, whereas the response to thromboxane A2 (TxA2) is normal. Underlying these changes in GRK6-/- platelets is an increase in Ca2+ mobilization, Akt activation, and granule secretion. Furthermore, deletion of GRK6 in human MEG-01 cells causes an increase in Ca2+ response and PAR1 surface expression in response to thrombin. Finally, we show that human platelet activation in response to thrombin causes an increase in binding of GRK6 to PAR1, as well as an increase in the phosphorylation of PAR1. Deletion of GRK6 in MEG-01 cells causes a decrease in PAR1 phosphorylation. Taken together, these data show that GRK6 regulates the hemostatic response to injury through PAR- and P2Y12-mediated effects, helping to limit the rate of platelet activation during thrombus growth and prevent inappropriate platelet activation.
Assuntos
Plaquetas , Hemostáticos , Animais , Camundongos , Ativação Plaquetária , Receptores de Trombina , Transdução de SinaisRESUMO
Endothelial nitric oxide (NO) synthase (eNOS) plays a critical role in the maintenance of blood vessel homeostasis. Recent findings suggest that cytoskeletal dynamics play an essential role in regulating eNOS expression and activation. Here, we sought to test whether modulation of cytoskeletal dynamics through pharmacological regulation of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation affects eNOS expression and endothelial function in vitro and in vivo We found that tubulin acetylation inducer (tubacin), a compound that appears to selectively inhibit HDAC6 activity, dramatically increased eNOS expression in several different endothelial cell lines, as determined by both immunoblotting and NO production assays. Mechanistically, we found that these effects were not mediated by tubacin's inhibitory effect on HDAC6 activity, but rather were due to its ability to stabilize eNOS mRNA transcripts. Consistent with these findings, tubacin also inhibited proinflammatory cytokine-induced degradation of eNOS transcripts and impairment of endothelium-dependent relaxation in the mouse aorta. Furthermore, we found that tubacin-induced up-regulation in eNOS expression in vivo is associated with improved endothelial function in diabetic db/db mice and with a marked attenuation of ischemic brain injury in a murine stroke model. Our findings indicate that tubacin exhibits potent eNOS-inducing effects and suggest that this compound might be useful for the prevention or management of endothelial dysfunction-associated cardiovascular diseases.
Assuntos
Anilidas/farmacologia , Endotélio Vascular/patologia , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/química , Acetilação , Animais , Aorta/metabolismo , Encéfalo/patologia , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Feminino , Regulação Enzimológica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Acidente Vascular Cerebral/fisiopatologia , Tubulina (Proteína)/química , Regulação para CimaRESUMO
Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase (MAPKKK) that regulates activation of the c-Jun N-terminal kinase (JNK)- and p38-stress response pathways leading to apoptosis in nucleated cells. We have previously shown that ASK1 is expressed in platelets and regulates agonist-induced platelet activation and thrombosis. However, the mechanism by which platelet agonists cause activation of ASK1 is unknown. Here, we show that in platelets agonist-induced activation of p38 is exclusively dependent on ASK1. Both thrombin and collagen were able to activate ASK1/p38. Activation of ASK1/p38 was strongly dependent on thromboxane A2 (TxA2) and ADP. Agonist-induced ASK1 activation is blocked by inhibition of phospholipase C (PLC) ß/γ activity or by chelating intracellular Ca2+. Furthermore, treatment of platelets with thapsigargin or Ca2+ ionophore robustly induced ASK1/p38 activation. In addition, calcium and integrin-binding protein 1 (CIB1), a Ca2+-dependent negative regulator of ASK1, associates with ASK1 in resting platelets and is dissociated upon platelet activation by thrombin. Dissociation of CIB1 corresponds with ASK1 binding to tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6) and the autophosphorylation of ASK1 Thr838 within the catalytic domain results in full activation of ASK1. Furthermore, genetic ablation of Cib1 in mice augments agonist-induced Ask1/p38 activation. Together our results suggest that in resting platelets ASK1 is bound to CIB1 at low Ca2+ concentrations. Agonist-induced platelet activation causes an increase in intracellular Ca2+ concentration that leads to the dissociation of CIB1 from ASK1, allowing for proper dimerization through ASK1 N-terminal coiled-coil (NCC) domains.
Assuntos
Plaquetas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Ativação Plaquetária/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Plaquetas/citologia , Cálcio/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação ProteicaRESUMO
Calcium and integrin binding protein 1 (CIB1) is a calcium-binding protein that was initially identified as a binding partner of platelet integrin αIIb. Although CIB1 has been shown to interact with multiple proteins, its biological function in the brain remains unclear. Here, we show that CIB1 negatively regulates degeneration of dopaminergic neurons in a mouse model of Parkinson's disease using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Genetic deficiency of the CIB1 gene enhances MPTP-induced neurotoxicity in dopaminergic neurons in CIB1-/- mice. Furthermore, RNAi-mediated depletion of CIB1 in primary dopaminergic neurons potentiated 1-methyl-4-phenyl pyrinidium (MPP+)-induced neuronal death. CIB1 physically associated with apoptosis signal-regulating kinase 1 (ASK1) and thereby inhibited the MPP+-induced stimulation of the ASK1-mediated signaling cascade. These findings suggest that CIB1 plays a protective role in MPTP/MPP+-induced neurotoxicity by blocking ASK1-mediated signaling.
Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Intoxicação por MPTP/patologia , Doença de Parkinson/patologia , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Apoptose/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND: It is believed that activation of c-Src bound to the integrin ß3 subunit initiates outside-in signaling. The involvement of αIIb in outside-in signaling is poorly understood. OBJECTIVES: We have previously shown that CIB1 specifically interacts with the cytoplasmic domain of αIIb and is required for αIIbß3 outside-in signaling. Here we evaluated the role of CIB1 in regulating outside-in signaling in the absence of inside-out signaling. METHODS: We used αIIb cytoplasmic domain peptide and CIB1-function blocking antibody to inhibit interaction of CIB1 with αIIb subunit as well as Cib1-/- platelets to evaluate the consequence of CIB1 interaction with αIIb on outside-in signaling. RESULTS: Fibrinogen binding to αIIbß3 results in calcium-dependent interaction of CIB1 with αIIb, which is not required for filopodia formation. Dynamic rearrangement of cytoskeleton results in CIB1-dependent recruitment of FAK to the αIIb complex and its activation. Disruption of the association of CIB1 and αIIb by incorporation of αIIb peptide or anti-CIB1 inhibited both FAK association and activation. Furthermore, FAK recruitment to the integrin complex was required for c-Src activation. Inhibition of c-Src had no effect on CIB1 accumulation with the integrin at the filopodia, suggesting that c-Src activity is not required for the formation of CIB1-αIIb-FAK complex. CONCLUSION: Our results suggest that interaction of CIB1 with αIIb is one of the early events occurring during outside-in signaling. Furthermore, CIB1 recruits FAK to the αIIbß3 complex at the filopodia where FAK is activated, which in turn activates c-Src, resulting in propagation of outside-in signaling leading to platelet spreading.
Assuntos
Plaquetas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Animais , Plaquetas/citologia , Western Blotting , Proteína Tirosina Quinase CSK , Proteínas de Ligação ao Cálcio/genética , Citoesqueleto/metabolismo , Ativação Enzimática , Imunofluorescência , Humanos , Imunoprecipitação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Ativação Plaquetária , Ligação Proteica , Pseudópodes/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismoRESUMO
RETRACTED: Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese individuals.