Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cytokine ; 169: 156301, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37515982

RESUMO

Leishmania infection of macrophages results in altered Ras isoforms expression and Toll-like receptor-2 (TLR2) expression and functions. Therefore, we examined whether TLR2 would selectively alter Ras isoforms' expression in macrophages. We observed that TLR2 ligands- Pam3CSK4, peptidoglycan (PGN), and FSL- selectively modulated the expression of Ras isoforms in BALB/c-derived elicited macrophages. Lentivirally-expressed TLR1-shRNA significantly reversed this Ras isoforms expression profile. TLR2-deficient L. major-infected macrophages and the lymph node cells from the L. major-infected mice showed similarly reversed Ras isoforms expression. Transfection of the macrophages with the siRNAs for the adaptors- Myeloid Differentiation factor 88 (MyD88) and Toll-Interleukin-1 Receptor (TIR) domain-containing adaptor protein (TIRAP)- or Interleukin-1 Receptor-Associated Kinases (IRAKs)- IRAK1 and IRAK4- significantly inhibited the L. major-induced down-regulation of K-Ras, and up-regulation of N-Ras and H-Ras, expression. The TLR1/TLR2-ligand Pam3CSK4 increased IL-10 and TGF-ß expression in macrophages. Pam3CSK4 upregulated N-Ras and H-Ras, but down-regulated K-Ras, expression in C57BL/6 wild-type, but not in IL-10-deficient, macrophages. IL-10 or TGF-ß signaling inhibition selectively regulated Ras isoforms expression. These observations indicate the specificity of the TLR2 regulation of Ras isoforms and their selective modulation by MyD88, TIRAP, and IRAKs, but not IL-10 or TGF-ß, signaling.


Assuntos
Leishmania major , Leishmaniose Cutânea , Macrófagos , Receptor 2 Toll-Like , Proteínas ras , Leishmaniose Cutânea/metabolismo , Animais , Camundongos , Camundongos Endogâmicos BALB C , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Macrófagos/metabolismo , Ligantes , Proteínas ras/metabolismo , Peptidoglicano/metabolismo , Quinases Associadas a Receptores de Interleucina-1 , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/metabolismo , Regulação para Baixo
2.
J Cell Commun Signal ; 17(3): 1009-1021, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37126117

RESUMO

Ras GTPases are central to cellular signaling and oncogenesis. The three loci of the Ras gene encode for four protein isoforms namely Harvey-Ras (H-Ras), Kirsten-Ras (K-Ras 4A and 4B), and Neuroblastoma-Ras (N-Ras) which share ~ 80% sequence similarity and used to be considered functionally redundant. The small molecule inhibitors of Ras lack specificity for the isoforms leading to widespread toxicity in Ras-targeted therapeutics. Ras isoforms' tissue-specific expression and selective association with carcinogenesis, embryonic development, and infection suggested their non-redundancy. We show that CD40, an antigen-presenting cell (APC)-expressed immune receptor, induces selective relocation of H-Ras, K-Ras, and N-Ras to the Plasma membrane (PM) lipid rafts, mitochondria, endoplasmic reticulum (ER), but not to the Golgi complex (GC). The two palmitoylated Ras isoforms-H-Ras and N-Ras-have a similar pattern of colocalization into the lipid-rich raft microdomain of the PM at early time points when compared to non-palmitoylated K-Ras (4B) with polylysine residues. CD40-induced trafficking of H-Ras and K-Ras to mitochondria and ER was found to be similar but different from that of N-Ras. Trafficking of all the Ras isoforms to the GC was independent of CD40 stimulation. The receptor-driven trafficking and spatial segregation of H-Ras, K-Ras, and N-Ras imply isoform-specific subcellular signaling platforms for the functional non-redundancy of Ras isoforms. PDB structures have been modified to illustrate various signaling proteins.

3.
Eur J Immunol ; 53(7): e2350430, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37173132

RESUMO

Ras GTPases, well characterized for their role in oncogenesis, are the cells' molecular switches that signal to maintain immune homeostasis through cellular development, proliferation, differentiation, survival, and apoptosis. In the immune system, T cells are the central players that cause autoimmunity if dysregulated. Antigen-specific T-cell receptor (TCR) stimulation activates Ras-isoforms, which exhibit isoform-specific activator and effector requirements, functional specificities, and a selective role in T-cell development and differentiation. Recent studies show the role of Ras in T-cell-mediated autoimmune diseases; however, there is a scarcity of knowledge about the role of Ras in T-cell development and differentiation. To date, limited studies have demonstrated Ras activation in response to positive and negative selection signals and Ras isoform-specific signaling, including subcellular signaling, in immune cells. The knowledge of isoform-specific functions of Ras in T cells is essential, but still inadequate to develop the T-cell-targeted Ras isoform-specific treatment strategies for the diseases caused by altered Ras-isoform expression and activation in T cells. In this review, we discuss the role of Ras in T-cell development and differentiation, critically analyzing the isoform-specific functions.


Assuntos
Doenças Autoimunes , Linfócitos T , Humanos , Transdução de Sinais , Diferenciação Celular , Receptores de Antígenos de Linfócitos T , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
Toxics ; 11(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36851040

RESUMO

During the COVID-19 pandemic, governments in many countries worldwide, including India, imposed several restriction measures, including lockdowns, to prevent the spread of the infection. COVID-19 lockdowns led to a reduction in gaseous and particulate pollutants in ambient air. In the present study, we investigated the substantial changes in selected volatile organic compounds (VOCs) after the outbreak of the coronavirus pandemic and associations with health risk assessments in industrial areas. VOC data from 1 January 2019 to 31 December 2021 were collected from the Central Pollution Control Board (CPCB) website, to identify percentage changes in VOC levels before, during, and after COVID-19. The mean TVOC levels at all monitoring stations were 47.22 ± 30.15, 37.19 ± 37.19, and 32.81 ± 32.81 µg/m3 for 2019, 2020, and 2021, respectively. As a result, the TVOC levels gradually declined in consecutive years due to the pandemic in India. The mean TVOC levels at all monitoring stations declined from 9 to 61% during the pandemic period as compared with the pre-pandemic period. In the current study, the T/B ratio values ranged from 2.16 (PG) to 26.38 (NL), which indicated that the major pollutant contributors were traffic and non-traffic sources during the pre-pandemic period. The present findings indicated that TVOC levels had positive but low correlations with SR, BP, RF, and WD, with correlation coefficients (r) of 0.034, 0.118, 0.012, and 0.007, respectively, whereas negative correlations were observed with AT and WS, with correlation coefficients (r) of -0.168 and -0.150, respectively. The lifetime cancer risk (LCR) value for benzene was reported to be higher in children, followed by females and males, for the pre-pandemic, pandemic, and post-pandemic periods. A nationwide scale-up of this study's findings might be useful in formulating future air pollution reduction policies associated with a reduction in health risk factors. Furthermore, the present study provides baseline data for future studies on the impacts of anthropogenic activities on the air quality of a region.

5.
J Atmos Chem ; 80(1): 53-76, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35992767

RESUMO

A novel coronavirus has affected almost all countries and impacted the economy, environment, and social life. The short-term impact on the environment and human health needs attention to correlate the Volatile organic compounds (VOCs) and health assessment for pre-, during, and post lockdowns. Therefore, the current study demonstrates VOC changes and their effect on air quality during the lockdown. The findings of result, the levels of the mean for total VOC concentrations were found to be 15.45 ± 21.07, 2.48 ± 1.61, 19.25 ± 28.91 µg/m3 for all monitoring stations for pre-, during, and post lockdown periods. The highest value of TVOCs was observed at Thane, considered an industrial region (petroleum refinery), and the lowest at Bandra, which was considered a residential region, respectively. The VOC levels drastically decreased by 52%, 89%, 80%, and 97% for benzene, toluene, ethylbenzene, and m-xylene, respectively, during the lockdown period compared to the previous year. In the present study, the T/B ratio was found lower in the lockdown period as compared to the pre-lockdown period. This can be attributed to the complete closure of non-traffic sources such as industries and factories during the lockdown. The Lifetime Cancer Risk values for all monitoring stations for benzene for pre-and-post lockdown periods were higher than the prescribed value, except during the lockdown period. Supplementary Information: The online version contains supplementary material available at 10.1007/s10874-022-09440-5.

6.
J Oral Microbiol ; 13(1): 1967699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527182

RESUMO

INTRODUCTION: Bacterial and fungal secondary infections following COVID-19 disease are widely being reported and are an area that should receive careful attention. Mucormycosis is a fatal fungal condition affecting immunocompromised patients caused by a group of mold mucoromycetes. Candida albicans (C. albicans) is an oral commensal present in almost 40-65% of healthy oral cavities in adults. Several cases of mucormycosis and oral candidiasis have been reported lately in COVID-19 patients, and it may elevate the associated risks of morbidity and mortality. MATERIALS AND METHODS: Articles were taken from a period of 2020 to April 2021 using search sources such as Cochrane, PubMed, Fungiscope and Mycobank using keywords mucormycosis, Black fungus, oral candidiasis, white fungus, COVID-19, Sars-Cov-2. DISCUSSION: The development of oral mucocutaneous lesions, such as mucormycosis and candidiasis in COVID-19 patients could be due to inhaling spores resulting in pulmonary and/or sinus congestion and prolonged mechanical ventilation in the ICU settings and the long-term use of broad-spectrum antibiotics respectively. The onset of candidiasis after the emergence of COVID-19 clinical signs and symptoms varied considerably and is reported within 1-30 days in most of the cases reported in the literature. Biofilms present on the denture surfaces are predisposing factors to oral candidiasis. We aim to summarize the limited data available regarding diagnosis, clinical presentation, and therapeutic approaches for the management of Mucormycosis and oral candidiasis in COVID-19 patients. CONCLUSION: Careful monitoring of oral lesions should be instituted through interdisciplinary telemedicine and teleconsultation to aid in primary diagnosis, thereby avoiding personal attendance during the pandemic. Dental practitioners should be included among the interdisciplinary teams for exhaustive intraoral examination and reduce the risk of morbidity and mortality.

7.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204435

RESUMO

The central protein in the oncogenic circuitry is the Ras GTPase that has been under intense scrutiny for the last four decades. From its discovery as a viral oncogene and its non-oncogenic contribution to crucial cellular functioning, an elaborate genetic, structural, and functional map of Ras is being created for its therapeutic targeting. Despite decades of research, there still exist lacunae in our understanding of Ras. The complexity of the Ras functioning is further exemplified by the fact that the three canonical Ras genes encode for four protein isoforms (H-Ras, K-Ras4A, K-Ras4B, and N-Ras). Contrary to the initial assessment that the H-, K-, and N-Ras isoforms are functionally similar, emerging data are uncovering crucial differences between them. These Ras isoforms exhibit not only cell-type and context-dependent functions but also activator and effector specificities on activation by the same receptor. Preferential localization of H-, K-, and N-Ras in different microdomains of the plasma membrane and cellular organelles like Golgi, endoplasmic reticulum, mitochondria, and endosome adds a new dimension to isoform-specific signaling and diverse functions. Herein, we review isoform-specific properties of Ras GTPase and highlight the importance of considering these towards generating effective isoform-specific therapies in the future.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/genética , Biomarcadores , Biomarcadores Tumorais , Regulação da Expressão Gênica , Humanos , Mutação , Isoformas de Proteínas , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Pesquisa , Transdução de Sinais , Relação Estrutura-Atividade , Pesquisa Translacional Biomédica , Proteínas ras/metabolismo
8.
Parasite Immunol ; 43(9): e12870, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34028815

RESUMO

Following inoculation of Leishmania, a protozoan parasite, into the skin of a mammal, the epidermal keratinocytes recognize the parasite and influence the local immune response that can give rise to different outcomes of leishmaniasis. The early keratinocyte-derived cytokines and keratinocytes-T cells interactions shape the anti-leishmanial immune responses that contribute to the resistance or susceptibility to leishmaniasis. The keratinocyte-derived cytokines can directly potentiate the leishmanicidal activity of monocytes and macrophages. As keratinocytes express MHC-II and enhance the expression of costimulatory molecules, these cells act as antigen-presenting cells (APCs) in cutaneous leishmaniasis (CL). Depending on the epidermal microenvironment, the keratinocytes induce various types of effector CD4+ T cells. Keratinocyte apoptosis and necrosis have been also implicated in ulceration in CL. Further, keratinocytes contribute to the healing of Leishmania-related cutaneous wounds. However, keratinocyte-derived IL-10 may play a key role in the development of post-kala-azar dermal leishmaniasis (PKDL). In this review, a comprehensive discussion regarding the multiple roles played by keratinocytes during leishmaniasis was provided, while highlighting novel insights concerning the immunological and pathological roles of these cells.


Assuntos
Leishmania donovani , Leishmania , Leishmaniose Cutânea , Leishmaniose Visceral , Animais , Queratinócitos , Pele
9.
Cytokine ; 145: 155458, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33581983

RESUMO

Cytokines are pleiotropic polypeptides that control the development of and responses mediated by immune cells. Cytokine classification predominantly relies on [1] the target receptor(s), [2] the primary structural features of the extracellular domains of their receptors, and [3] their receptor composition. Functionally, cytokines are either pro-inflammatory or anti-inflammatory, hematopoietic colony-stimulating factors, developmental and would healing maintaining immune homeostasis. When the balance in C can form complex networks amongst themselves that may affect the homeostasis and diseases. Cytokines can affect resistance and susceptibility for many diseases and their availability in the host cytokine production and interaction is disturbed, immunopathogenesis sets in. Therefore, cytokine-targeting bispecific, and chimeric antibodies form a significant mode of immnuo-therapeutics Although the field has grown deep and wide, many areas of cytokine biology remain unknown. Here, we have reviewed these cytokines along with the organization, signaling, and functions through respective cytokine-receptor-families. Being part of the special issue on the Role of Cytokines in Leishmaniasis, this review is intended to be used as an organized primer on cytokines and not a resource for detailed discussion- for which a two-volume Handbook of cytokines is available- on each of the cytokines. Priming the readers on cytokines, we next brief the role of cytokines in Leishmaniasis. In the brief, we do not provide an account of each of the involved cytokines known to date, instead, we offer a temporal relationship between the cytokines and the progress of the infection towards the alternate outcomes- healing or non-healing- of the infection.


Assuntos
Citocinas/imunologia , Leishmaniose/imunologia , Animais , Homeostase/imunologia , Humanos , Inflamação/imunologia , Leishmaniose/parasitologia , Receptores de Citocinas/imunologia , Transdução de Sinais/imunologia
10.
J Conserv Dent ; 24(5): 491-495, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35399770

RESUMO

Background: Proper hybrid layer formation lays the foundation of resin-dentin bonding. The resin infiltration in demineralized dentin collagen couples with the adhesive/resin composites in the mineralized dentin surface. However, the activation of enzymatic activity in the collagen matrix can degrade the hybrid layer. Over the time, it leads to reduced bond strength. Mainly, the enzymes involved are matrix metalloproteinases (MMPs) which are involved in degrading most of the extracellular matrix components. Aloe vera is an herb with an anti-inflammatory effect, but its role in human dentin as an enzyme inhibitor has not been verified yet. Aims: The purpose of the study was designed for evaluating the inhibitory action of Aloe vera on MMP in human dentin with and without dentin bonding agents. Materials and Methods: A total of 15 freshly extracted healthy human teeth were collected and stored at 4°C until use. The roots were separated. The enamel and remnant pulp tissue were removed, and collected teeth were pulverized with liquid nitrogen in the minimum volume of 50-mM phosphate buffer to obtain dentin powder extract. The dentin powder extract is the source of MMPs, and therefore, the extract was treated with A. vera solution and incubated to assess the enzyme inhibition by the plate assay method and zymographic analysis. Results: A. vera treated sample with and without dentin bonding agent showed inhibition of dentin MMP's activity by plate assay method and confirmed by zymogram analysis. Conclusions: A. vera has the potential for inhibiting the MMPs enzyme activity of human dentin collagen with and without dentin bonding agents.

11.
Front Immunol ; 11: 898, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582141

RESUMO

Tumor progression in the host leads to severe impairment of intrathymic T-cell differentiation/maturation, leading to the paralysis of cellular anti-tumor immunity. Such suppression manifests the erosion of CD4+CD8+ double-positive (DP) immature thymocytes and a gradual increase in CD4-CD8- double negative (DN) early T-cell progenitors. The impact of such changes on the T-cell progenitor pool in the context of cancer remains poorly investigated. Here, we show that tumor progression blocks the transition of Lin-Thy1.2+CD25+CD44+c-KitlowDN2b to Lin-Thy1.2+CD25+CD44-c-Kit-DN3 in T-cell maturation, instead leading to DN2-T-cell differentiation into dendritic cells (DC). We observed that thymic IL-10 expression is upregulated, particularly at cortico-medullary junctions (CMJ), under conditions of progressive disease, resulting in the termination of IL-10Rhigh DN2-T-cell maturation due to dysregulated expression of Notch1 and its target, CCR7 (thus restricting these cells to the CMJ). Intrathymic differentiation of T-cell precursors in IL-10-/- mice and in vitro fetal thymic organ cultures revealed that IL-10 promotes the interaction between thymic stromal cells and Notch1low DN2-T cells, thus facilitating these DN2-T cells to differentiate toward CD45+CD11c+MHC-II+ thymic DCs as a consequence of activating the Ikaros/IRF8 signaling axis. We conclude that a novel function of thymically-expressed IL-10 in the tumor-bearing host diverts T-cell differentiation toward a DC pathway, thus limiting the protective adaptive immune repertoire.


Assuntos
Células Dendríticas/fisiologia , Fator de Transcrição Ikaros/metabolismo , Células Progenitoras Linfoides/fisiologia , Receptor Notch1/metabolismo , Sarcoma/imunologia , Neoplasias Cutâneas/imunologia , Linfócitos T/fisiologia , Timo/citologia , Animais , Pontos de Checagem do Ciclo Celular , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Fator de Transcrição Ikaros/genética , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor Notch1/genética , Transdução de Sinais
12.
Cell Commun Signal ; 18(1): 3, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31906952

RESUMO

BACKGROUND: Ras are small cellular GTPases which regulate diverse cellular processes. It has three isoforms: H-Ras, K-Ras, and N-Ras. Owing to the N-terminus (1-165 residues) sequence homology these isoforms were thought to be functionally redundant. However, only K-Ras-deficient mice but not H-Ras- and N-Ras-deficient mice show embryonic lethality. Similarly, mutations in a given Ras isoform are associated with a particular type of cancer. Moreover, we have previously reported that Ras isoforms perform unique functions in Leishmania major infection. Thus, Ras isoforms are implicated to have signaling and functional specificity but the mechanism remains to be elucidated. RESULT: Using CD40 as a model receptor, we showed that depending on the strength of signaling, specific Ras isoforms are activated. Weak CD40 signal activates N-Ras, whereas strong signal activates H-Ras and K-Ras. Additionally, we showed that suppression of N-Ras expression reduced CD40-induced extracellular signal-regulated kinase-1/2 (ERK-1/2) activation and Interleukin (IL)-10 production; whereas suppression of H-Ras or K-Ras reduced CD40-induced p38 mitogen-activated protein kinase (p38MAPK) activation and IL-12 production. Furthermore, we showed that Ras isoforms have activator (GEF) specificity as weak CD40 signal-activated N-Ras requires Sos-1/2 whereas strong CD40 signal-activated H-Ras/K-Ras requires Ras-GRP as the guanine-nucleotide exchange factor (GEF) inducing ERK-1/2- or p38MAPK-mediated IL-10 or IL-12 productions, respectively, in macrophages. Silencing of syk reduced CD40-induced N-Ras activation but silencing of lyn inhibited H-Ras and K-Ras activation. In CD40 signaling, Ras isoforms also showed effector specificity; while H-Ras and K-Ras showed specificity for phosphatidyl inositol-3 kinase activation at high dose of CD40 stimulation, N-Ras primarily associated with Raf-1 at low dose of CD40 stimulation. Moreover, fractal analysis showed that functional site surface roughness for H-Ras (SurfaceFD = 2.39) and K-Ras (SurfaceFD = 2.39) are similar but significantly different from N-Ras (SurfaceFD = 2.25). CONCLUSION: The activator and effector specificities of Ras isoforms in CD40 signaling indicated their differential involvement in CD40 pathway and in maintaining the reciprocity. Our observations reveal Ras-regulated signaling outcome and its potential for developing Ras isoform-targeted immunotherapy and prophylaxis.


Assuntos
Antígenos CD40/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Animais , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos Endogâmicos BALB C , Isoformas de Proteínas/metabolismo , Quinase Syk , Quinases da Família src
13.
Vaccines (Basel) ; 7(4)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635276

RESUMO

Leishmaniasis is a neglected protozoan parasitic disease that occurs in 88 countries but a vaccine is unavailable. Vaccination with live, killed, attenuated (physically or genetically) Leishmania have met with limited success, while peptide-, protein-, or DNA-based vaccines showed promise only in animal models. Here, we critically assess several technical issues in vaccination and expectation of a host-protective immune response. Several studies showed that antigen presentation during priming and triggering of the same cells in infected condition are not comparable. Altered proteolytic processing, antigen presentation, protease-susceptible sites, and intracellular expression of pathogenic proteins during Leishmania infection may vary dominant epitope selection, MHC-II/peptide affinity, and may deter the reactivation of desired antigen-specific T cells generated during priming. The robustness of the memory T cells and their functions remains a concern. Presentation of the antigens by Leishmania-infected macrophages to antigen-specific memory T cells may lead to change in the T cells' functional phenotype or anergy or apoptosis. Although cells may be activated, the peptides generated during infection may be different and cross-reactive to the priming peptides. Such altered peptide ligands may lead to suppression of otherwise active antigen-specific T cells. We critically assess these different immunological issues that led to the non-availability of a vaccine for human use.

14.
IUBMB Life ; 71(11): 1685-1700, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31329370

RESUMO

Toll-like receptors (TLRs) are a subset of pattern recognition receptors (PRR) in innate immunity and act as a connecting link between innate and adaptive immune systems. During Leishmania infection, the activation of TLRs influences the pathogen-specific immune responses, which may play a decisive role in determining the outcome of infection, toward elimination or survival of the pathogen. Antigen-presenting cells (APCs) of the innate immune system such as macrophages, dendritic cells (DCs), neutrophils, natural killer (NK) cells, and NKT cells express TLR2, which plays a crucial role in the parasite recognition and elicitation of immune responses in Leishmania infection. Depending on the infecting Leishmania species, the TLR2 pathways may result in a host-protective or a disease-exacerbating response. While Leishmania major and Leishmania donovani infections trigger TLR2-related host-protective and non-protective immune responses, Leishmania mexicana and Leishmania infantum infections are reported to elicit TLR2-mediated host-protective responses and Leishmania amazonensis and Leishmania braziliensis infections are reported to evoke a disease-exacerbating response. These findings illustrate that TLR2-related effector functions are diverse and may be exerted in a species- or strain-dependent manner. TLR2 agonists or antagonists may have therapeutic potentials to trigger the desired immune response during leishmaniasis. In this review, we discuss the TLR2-related immune responses during leishmaniasis and highlight the novel insights into the possible role of TLR2-driven resistance or susceptibility to Leishmania.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata/imunologia , Leishmania/imunologia , Leishmaniose/imunologia , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/imunologia , Animais , Antiparasitários/farmacologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Humanos , Leishmaniose/parasitologia , Macrófagos/imunologia , Macrófagos/parasitologia
15.
Int J Mol Sci ; 20(13)2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277491

RESUMO

During the last 100 years, cell signaling has evolved into a common mechanism for most physiological processes across systems. Although the majority of cell signaling principles were initially derived from hormonal studies, its exponential growth has been supported by interdisciplinary inputs, e.g., from physics, chemistry, mathematics, statistics, and computational fields. As a result, cell signaling has grown out of scope for any general review. Here, we review how the messages are transferred from the first messenger (the ligand) to the receptor, and then decoded with the help of cascades of second messengers (kinases, phosphatases, GTPases, ions, and small molecules such as cAMP, cGMP, diacylglycerol, etc.). The message is thus relayed from the membrane to the nucleus where gene expression ns, subsequent translations, and protein targeting to the cell membrane and other organelles are triggered. Although there are limited numbers of intracellular messengers, the specificity of the response profiles to the ligands is generated by the involvement of a combination of selected intracellular signaling intermediates. Other crucial parameters in cell signaling are its directionality and distribution of signaling strengths in different pathways that may crosstalk to adjust the amplitude and quality of the final effector output. Finally, we have reflected upon its possible developments during the coming years.


Assuntos
Células/metabolismo , Transdução de Sinais , Animais , Humanos , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Pesquisa Translacional Biomédica
16.
J Immunol ; 194(8): 3852-60, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25786685

RESUMO

Leishmania major is a parasite that resides and replicates in macrophages. We previously showed that the parasite enhanced CD40-induced Raf-MEK-ERK signaling but inhibited PI3K-MKK-p38MAPK signaling to proleishmanial effects. As Raf and PI3K have a Ras-binding domain but exert opposite effects on Leishmania infection, we examined whether Ras isoforms had differential roles in Leishmania infection. We observed that L. major enhanced N-Ras and H-Ras expression but inhibited K-Ras expression in macrophages. L. major infection enhanced N-Ras activity but inhibited H-Ras and K-Ras activity. TLR2 short hairpin RNA or anti-TLR2 or anti-lipophosphoglycan Abs reversed the L. major-altered N-Ras and K-Ras expressions. Pam3CSK4, a TLR2 ligand, enhanced N-Ras expression but reduced K-Ras expression, indicating TLR2-regulated Ras expression in L. major infection. Whereas N-Ras silencing reduced L. major infection, K-Ras and H-Ras silencing enhanced the infection both in macrophages in vitro and in C57BL/6 mice. BALB/c-derived macrophages transduced with lentivirally expressed N-Ras short hairpin RNA and pulsed with L. major-expressed MAPK10 enhanced MAPK10-specific Th1-type response. CD40-deficient mice primed with these macrophages had reduced L. major infection, accompanied by higher IFN-γ but less IL-4 production. As N-Ras is activated by Sos, a guanine nucleotide exchange factor, we modeled the N-Ras-Sos interaction and designed two peptides from their interface. Both the cell-permeable peptides reduced L. major infection in BALB/c mice but not in CD40-deficient mice. These data reveal the L. major-enhanced CD40-induced N-Ras activation as a novel immune evasion strategy and the potential for Ras isoform-targeted antileishmanial immunotherapy and immunoprophylaxis.


Assuntos
Antígenos CD40/imunologia , Regulação Enzimológica da Expressão Gênica/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Proteínas Monoméricas de Ligação ao GTP/imunologia , Animais , Antígenos CD40/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Evasão da Resposta Imune/efeitos dos fármacos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Imunoterapia , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/patologia , Leishmaniose Cutânea/prevenção & controle , Lipopeptídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Proteína Quinase 10 Ativada por Mitógeno/genética , Proteína Quinase 10 Ativada por Mitógeno/imunologia , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Monoméricas de Ligação ao GTP/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Proteína Son Of Sevenless de Drosófila/genética , Proteína Son Of Sevenless de Drosófila/imunologia , Células Th1/imunologia , Células Th1/patologia , Receptor 2 Toll-Like , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA