Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(33): e2305465120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549252

RESUMO

Microbes evolve rapidly by modifying their genomes through mutations or through the horizontal acquisition of mobile genetic elements (MGEs) linked with fitness traits such as antimicrobial resistance (AMR), virulence, and metabolic functions. We conducted a multicentric study in India and collected different clinical samples for decoding the genome sequences of bacterial pathogens associated with sepsis, urinary tract infections, and respiratory infections to understand the functional potency associated with AMR and its dynamics. Genomic analysis identified several acquired AMR genes (ARGs) that have a pathogen-specific signature. We observed that blaCTX-M-15, blaCMY-42, blaNDM-5, and aadA(2) were prevalent in Escherichia coli, and blaTEM-1B, blaOXA-232, blaNDM-1, rmtB, and rmtC were dominant in Klebsiella pneumoniae. In contrast, Pseudomonas aeruginosa and Acinetobacter baumannii harbored blaVEB, blaVIM-2, aph(3'), strA/B, blaOXA-23, aph(3') variants, and amrA, respectively. Regardless of the type of ARG, the MGEs linked with ARGs were also pathogen-specific. The sequence type of these pathogens was identified as high-risk international clones, with only a few lineages being predominant and region-specific. Whole-cell proteome analysis of extensively drug-resistant K. pneumoniae, A. baumannii, E. coli, and P. aeruginosa strains revealed differential abundances of resistance-associated proteins in the presence and absence of different classes of antibiotics. The pathogen-specific resistance signatures and differential abundance of AMR-associated proteins identified in this study should add value to AMR diagnostics and the choice of appropriate drug combinations for successful antimicrobial therapy.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli/genética , beta-Lactamases/genética , beta-Lactamases/farmacologia , Proteômica , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla/genética , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana
2.
Prog Mol Biol Transl Sci ; 192(1): 53-95, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36280325

RESUMO

Infectious origins of a set of severe gastroduodenal diseases viz. gastritis, duodenal ulcer, gastric ulcer, gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma were appreciated only after the discovery of H. pylori in 1983. In the past two decades, however, findings from many laboratories suggest that apart from H. pylori, several of the trillions of microbes that populate the human gastrointestinal tract and form microbiomes of the respective niches (like oral microbiome, esophageal microbiome, gastric microbiome and intestinal microbiome) may also participate in maintaining the healthy state of stomach and duodenum. Dysbiosis leading to alteration in the relative abundance of the key gastrointestinal microbes is associated with severe gastric diseases. For instance, an increased abundance of genera like Leptotrichia, Prevotella and Veillonella in gastric microbiome and a decreased abundance of Bifidobacterium in intestinal microbiome are associated with gastric cancer. H. pylori infection, apart from causing direct harm to the gastric epithelium by its virulence proteins like vacuolating cytotoxin A (VacA) and cytotoxin associated gene A (CagA), is also capable of triggering dysbiosis in stomach and intestinal microbiomes. In this chapter, we have discussed the possible roles of bacteria, viruses, fungi, archaea, protozoa and helminths in human gastrointestinal tracts in the context of H. pylori infection in stomach and various gastroduodenal diseases.


Assuntos
Microbioma Gastrointestinal , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/genética , Disbiose/complicações , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Estômago , Neoplasias Gástricas/microbiologia , Citotoxinas
3.
Genomics ; 113(6): 3951-3966, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619341

RESUMO

Microbes evolve rapidly by modifying their genome through mutations or acquisition of genetic elements. Antimicrobial resistance in Helicobacter pylori is increasingly prevalent in India. However, limited information is available about the genome of resistant H. pylori isolated from India. Our pan- and core-genome based analyses of 54 Indian H. pylori strains revealed plasticity of its genome. H. pylori is highly heterogenous both in terms of the genomic content and DNA sequence homology of ARGs and virulence factors. We observed that the H. pylori strains are clustered according to their geographical locations. The presence of point mutations in the ARGs and absence of acquired genetic elements linked with ARGs suggest target modifications are the primary mechanism of its antibiotic resistance. The findings of the present study would help in better understanding the emergence of drug-resistant H. pylori and controlling gastric disorders by advancing clinical guidance on selected treatment regimens.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Genômica , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/genética , Helicobacter pylori/genética , Humanos , Virulência/genética
4.
Front Cell Infect Microbiol ; 11: 622474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094994

RESUMO

Background: The incidence of preterm birth (PTB) in India is around 13%. Specific bacterial communities or individual taxon living in the vaginal milieu of pregnant women is a potential risk factor for PTB and may play an important role in its pathophysiology. Besides, bacterial taxa associated with PTB vary across populations. Objective: Conduct a comparative analysis of vaginal microbiome composition and microbial genomic repertoires of women who enrolled in the Interdisciplinary Group for Advanced Research on Birth Outcomes - A DBT India Initiative (GARBH-Ini) pregnancy cohort to identify bacterial taxa associated with term birth (TB) and PTB in Indian women. Methods: Vaginal swabs were collected during all three trimesters from 38 pregnant Indian women who delivered spontaneous term (n=20) and preterm (n=18) neonates. Paired-end sequencing of V3-V4 region of 16S rRNA gene was performed using the metagenomic DNA isolated from vaginal swabs (n=115). Whole genome sequencing of bacterial species associated with birth outcomes was carried out by shotgun method. Lactobacillus species were grown anaerobically in the De Man, Rogosa and Sharpe (MRS) agar culture medium for isolation of genomic DNA and whole genome sequencing. Results: Vaginal microbiome of both term and preterm samples reveals similar alpha diversity indices. However, significantly higher abundance of Lactobacillus iners (p-value All_Trimesters<0.02), Megasphaera sp (p-value1st_Trimester <0.05), Gardnerella vaginalis (p-value2nd_Trimester= 0.01) and Sneathia sanguinegens (p-value2nd_Trimester <0.0001) were identified in preterm samples whereas higher abundance of L. gasseri (p-value3rd_Trimester =0.010) was observed in term samples by Wilcoxon rank-sum test. The relative abundance of L. iners, and Megasphaera sp. were found to be significantly different over time between term and preterm mothers. Analyses of the representative genomes of L. crispatus and L. gasseri indicate presence of secretory transcriptional regulator and several ribosomally synthesized antimicrobial peptides correlated with anti-inflammatory condition in the vagina. These findings indicate protective role of L. crispatus and L. gasseri in reducing the risk of PTB. Conclusion: Our findings indicate that the dominance of specific Lactobacillus species and few other facultative anaerobes are associated with birth outcomes.


Assuntos
Nascimento Prematuro , Feminino , Fusobactérias , Humanos , Índia , Recém-Nascido , Lactobacillus , Gravidez , Nascimento Prematuro/epidemiologia , RNA Ribossômico 16S/genética , Vagina
5.
Front Microbiol ; 12: 631140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717022

RESUMO

Helicobacter pylori infection in stomach leads to gastric cancer, gastric ulcer, and duodenal ulcer. More than 1 million people die each year due to these diseases, but why most H. pylori-infected individuals remain asymptomatic while a certain proportion develops such severe gastric diseases remained an enigma. Several studies indicated that gastric and intestinal microbiota may play a critical role in the development of the H. pylori-associated diseases. However, no specific microbe in the gastric or intestinal microbiota has been clearly linked to H. pylori infection and related gastric diseases. Here, we studied H. pylori infection, its virulence genes, the intestinal microbiota, and the clinical status of Trivandrum residents (N = 375) in southwestern India by standard H. pylori culture, PCR genotype, Sanger sequencing, and microbiome analyses using Illumina Miseq and Nanopore GridION. Our analyses revealed that gastric colonization by virulent H. pylori strains (vacAs1i1m1cagA+) is necessary but not sufficient for developing these diseases. Conversely, distinct microbial pools exist in the lower gut of the H. pylori-infected vs. H. pylori-non-infected individuals. Bifidobacterium (belonging to the phylum Actinobacteria) and Bacteroides (belonging to the phylum Bacteroidetes) were present in lower relative abundance for the H. pylori+ group than the H. pylori- group (p < 0.05). On the contrary, for the H. pylori+ group, genus Dialister (bacteria belonging to the phylum Firmicutes) and genus Prevotella (bacteria belonging to the phylum Bacteroidetes) were present in higher abundance compared to the H. pylori- group (p < 0.05). Notably, those who carried H. pylori in the stomach and had developed aggressive gastric diseases also had extremely low relative abundance (p < 0.05) of several Bifidobacterium species (e.g., B. adolescentis, B. longum) in the lower gut suggesting a protective role of Bifidobacterium. Our results show the link between lower gastrointestinal microbes and upper gastrointestinal diseases. Moreover, the results are important for developing effective probiotic and early prognosis of severe gastric diseases.

6.
Front Cell Infect Microbiol ; 10: 572096, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102256

RESUMO

The human pathogen Vibrio cholerae is the causative agent of severe diarrheal disease known as cholera. Of the more than 200 "O" serogroups of this pathogen, O1 and O139 cause cholera outbreaks and epidemics. The rest of the serogroups, collectively known as non-O1/non-O139 cause sporadic moderate or mild diarrhea and also systemic infections. Pathogenic V. cholerae circulates between nutrient-rich human gut and nutrient-deprived aquatic environment. As an autochthonous bacterium in the environment and as a human pathogen, V. cholerae maintains its survival and proliferation in these two niches. Growth in the gastrointestinal tract involves expression of several genes that provide bacterial resistance against host factors. An intricate regulatory program involving extracellular signaling inputs is also controlling this function. On the other hand, the ability to store carbon as glycogen facilitates bacterial fitness in the aquatic environment. To initiate the infection, V. cholerae must colonize the small intestine after successfully passing through the acid barrier in the stomach and survive in the presence of bile and antimicrobial peptides in the intestinal lumen and mucus, respectively. In V. cholerae, virulence is a multilocus phenomenon with a large functionally associated network. More than 200 proteins have been identified that are functionally linked to the virulence-associated genes of the pathogen. Several of these genes have a role to play in virulence and/or in functions that have importance in the human host or the environment. A total of 524 genes are differentially expressed in classical and El Tor strains, the two biotypes of V. cholerae serogroup O1. Within the host, many immune and biological factors are able to induce genes that are responsible for survival, colonization, and virulence. The innate host immune response to V. cholerae infection includes activation of several immune protein complexes, receptor-mediated signaling pathways, and other bactericidal proteins. This article presents an overview of regulation of important virulence factors in V. cholerae and host response in the context of pathogenesis.


Assuntos
Cólera , Vibrio cholerae , Surtos de Doenças , Humanos , Vibrio cholerae/genética , Virulência , Fatores de Virulência/genética
7.
Proc Natl Acad Sci U S A ; 117(38): 23762-23773, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32873641

RESUMO

Bacterial species are hosts to horizontally acquired mobile genetic elements (MGEs), which encode virulence, toxin, antimicrobial resistance, and other metabolic functions. The bipartite genome of Vibrio cholerae harbors sporadic and conserved MGEs that contribute in the disease development and survival of the pathogens. For a comprehensive understanding of dynamics of MGEs in the bacterial genome, we engineered the genome of V. cholerae and examined in vitro and in vivo stability of genomic islands (GIs), integrative conjugative elements (ICEs), and prophages. Recombinant vectors carrying the integration module of these GIs, ICE and CTXΦ, helped us to understand the efficiency of integrations of MGEs in the V. cholerae chromosome. We have deleted more than 250 acquired genes from 6 different loci in the V. cholerae chromosome and showed contribution of CTX prophage in the essentiality of SOS response master regulator LexA, which is otherwise not essential for viability in other bacteria, including Escherichia coli In addition, we observed that the core genome-encoded RecA helps CTXΦ to bypass V. cholerae immunity and allow it to replicate in the host bacterium in the presence of similar prophage in the chromosome. Finally, our proteomics analysis reveals the importance of MGEs in modulating the levels of cellular proteome. This study engineered the genome of V. cholerae to remove all of the GIs, ICEs, and prophages and revealed important interactions between core and acquired genomes.


Assuntos
Genoma Bacteriano/genética , Ilhas Genômicas/genética , Vibrio cholerae/genética , Proteínas de Bactérias/genética , Conjugação Genética/genética , Engenharia Genética , Sequências Repetitivas Dispersas/genética , Prófagos/genética , Serina Endopeptidases/genética , Vibrio cholerae/patogenicidade
8.
Front Microbiol ; 11: 825, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431681

RESUMO

Vibrio cholerae O1 serogroup strains have been classified into classical and El Tor biotypes. Cholera, a life-threatening diarrheal disease, can be caused by either biotype through the cholera toxin (CT) that they produce. To increase our knowledge of the pathogenicity of bacteria, we must understand the toxigenicity of bacteria. CT production by classical biotype strains in simple single-phase cell cultures has been established; however, special culture media and growth conditions that are not appropriate for mass production of CT are required to facilitate CT production in El Tor biotype strains. In this report, we produced CT in El Tor biotype strains using simple media and single-phase culture conditions. A single point mutation in ToxT, a transcriptional activator of toxin co-regulated pilus (TCP) and CT, enabled the El Tor biotype strains to produce CT in similar quantities as classical biotype strains in single-phase laboratory culture conditions. CT production capacity varied between El Tor biotype strains. Wave 2 and 3 atypical El Tor strains tended to produce more CT than prototype Wave 1 strains. Wave 2 and 3 strains lack neutral fermentation; however, the capacity for neutral fermentation was not associated with significant differences in CT production by El Tor biotype strains. The Wave 3 strain that caused the 2010 cholera outbreak in Haiti produced CT only when neutral fermentation was abolished. The disparity in CT production between the seventh cholera pandemic strains highlight the differences in virulence between strains and the cause of population changes in V. cholerae.

9.
Microb Ecol ; 80(2): 487-499, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32206831

RESUMO

The trillions of microorganisms residing in the human body display varying degrees of compositional and functional diversities within and between individuals and contribute significantly to host physiology and susceptibility to disease. Microbial species present in the vaginal milieu of reproductive age women showed a large personal component and varies widely in different ethnic groups at the taxonomic, genomic, and functional levels. Lactobacillus iners, L. crispatus, L. gasseri, L. jensenii, and L. johnsonii are most frequently detected bacterial species in the vaginal milieu of reproductive age women. However, we currently lack (i) an understanding of the baseline vaginal microbiota of reproductive age Indian women, (ii) the extent of taxonomic and functional variations of vaginal microbiota between individuals and (iii) the genomic repertoires of the dominant vaginal microbiota associated with the Indian subjects. In our study, we analyzed the metagenome of high vaginal swab (HVS) samples collected from 40 pregnant Indian women enrolled in the GARBH-Ini cohort. Composition and abundance of bacterial species was characterized by pyrosequencing 16S rRNA gene. We identified 3067 OTUs with ≥ 10 reads from four different bacterial phyla. Several species of lactobacilli were clustered into three community state types (CSTs). L. iners, L. crispatus, L. gasseri, and L. jensenii are the most frequently detected Lactobacillus species in the vaginal environment of Indian women. Other than Lactobacillus, several species of Halomonas were also identified in the vaginal environment of most of the women sampled. To gain genomic and functional insights, we isolated several Lactobacillus species from the HVS samples and explored their whole genome sequences by shotgun sequencing. We analyzed the genome of dominant Lactobacillus species, L. iners, L. crispatus, L. gasseri, and L. paragesseri to represent the CSTs and identify functions that may influence the composition of complex vaginal microbial ecology. This study reports for the first time the vaginal microbial ecology of Indian women and genomic insights into L. iners, L. crispatus, L. gasseri, and L. paragesseri commonly found in the genital tract of reproductive age women.


Assuntos
Genoma Bacteriano/fisiologia , Lactobacillus/fisiologia , Microbiota , Vagina/microbiologia , Adulto , Bactérias/isolamento & purificação , Feminino , Humanos , Índia , Lactobacillus/genética , Gravidez , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Adulto Jovem
10.
NPJ Biofilms Microbiomes ; 5(1): 37, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885873

RESUMO

The bacterial species living in the gut mediate many aspects of biological processes such as nutrition and activation of adaptive immunity. In addition, commensal fungi residing in the intestine also influence host health. Although the interaction of bacterium and fungus has been shown, its precise mechanism during colonization of the human intestine remains largely unknown. Here, we show interaction between bacterial and fungal species for utilization of dietary components driving their efficient growth in the intestine. Next generation sequencing of fecal samples from Japanese and Indian adults revealed differential patterns of bacterial and fungal composition. In particular, Indians, who consume more plant polysaccharides than Japanese, harbored increased numbers of Prevotella and Candida. Candida spp. showed strong growth responses to the plant polysaccharide arabinoxylan in vitro. Furthermore, the culture supernatants of Candida spp. grown with arabinoxylan promoted rapid proliferation of Prevotella copri. Arabinose was identified as a potential growth-inducing factor in the Candida culture supernatants. Candida spp. exhibited a growth response to xylose, but not to arabinose, whereas P. copri proliferated in response to both xylose and arabinose. Candida spp., but not P. copri, colonized the intestine of germ-free mice. However, P. copri successfully colonized mouse intestine already harboring Candida. These findings demonstrate a proof of concept that fungal members of gut microbiota can facilitate a colonization of the intestine by their bacterial counterparts, potentially mediated by a dietary metabolite.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Dieta/métodos , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Microbioma Gastrointestinal , Interações Microbianas , Animais , Bactérias/classificação , Fezes/microbiologia , Fungos/classificação , Humanos , Índia , Japão , Camundongos , Modelos Animais , Polissacarídeos/metabolismo
11.
J Biosci ; 44(5)2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31719226

RESUMO

The human gastrointestinal tract (GIT) harbors taxonomically and functionally complex microbial ecosystem. The composition of the microbial species in the GIT ecosystem varies among individuals and throughout development. Both environmental factors as well as host genetics influence the composition and homeostasis of GIT microbiome. Intrinsic GIT microbiome can be characterized in terms of diversity, richness, dynamics and resilience. In healthy individual, microbial communities maintain homeostatic equilibrium and are resistant against perturbations. The resilience and resistance to perturbations of the GIT microbial ecosystem are robust but not absolute. Several factors can affect the homeostatic equilibrium of GIT microbiome and lead to dysbiotic microbiome configuration. Taxonomic and/or functional dysbiosis in the GIT microbiome is associated with numerous health disorders like inflammatory bowel disease (IBD), malnutrition, metabolic disorders, asthma and neurodegenerative diseases. In this review, we discuss our current understanding of homeostasis and dysbiosis of the microbial ecology in the human gut and health disorders that are associated with the microbiome dysbiosis.


Assuntos
Microbioma Gastrointestinal , Homeostase , Humanos
12.
Proc Natl Acad Sci U S A ; 116(13): 6226-6231, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30867296

RESUMO

The Bay of Bengal is known as the epicenter for seeding several devastating cholera outbreaks across the globe. Vibrio cholerae, the etiological agent of cholera, has extraordinary competency to acquire exogenous DNA by horizontal gene transfer (HGT) and adapt them into its genome for structuring metabolic processes, developing drug resistance, and colonizing the human intestine. Antimicrobial resistance (AMR) in V. cholerae has become a global concern. However, little is known about the identity of the resistance traits, source of AMR genes, acquisition process, and stability of the genetic elements linked with resistance genes in V. cholerae Here we present details of AMR profiles of 443 V. cholerae strains isolated from the stool samples of diarrheal patients from two regions of India. We sequenced the whole genome of multidrug-resistant (MDR) and extensively drug-resistant (XDR) V. cholerae to identify AMR genes and genomic elements that harbor the resistance traits. Our genomic findings were further confirmed by proteome analysis. We also engineered the genome of V. cholerae to monitor the importance of the autonomously replicating plasmid and core genome in the resistance profile. Our findings provided insights into the genomes of recent cholera isolates and identified several acquired traits including plasmids, transposons, integrative conjugative elements (ICEs), pathogenicity islands (PIs), prophages, and gene cassettes that confer fitness to the pathogen. The knowledge generated from this study would help in better understanding of V. cholerae evolution and management of cholera disease by providing clinical guidance on preferred treatment regimens.


Assuntos
Cólera/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Transferência Genética Horizontal , Genoma Bacteriano/genética , Vibrio cholerae/genética , Antibacterianos/farmacologia , Conjugação Genética/genética , Elementos de DNA Transponíveis/genética , Diarreia/microbiologia , Evolução Molecular , Fezes/microbiologia , Variação Genética , Ilhas Genômicas/genética , Humanos , Imipenem/farmacologia , Índia , Sequências Repetitivas Dispersas/genética , Fenótipo , Plasmídeos/genética , Prófagos/genética , Proteoma , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/isolamento & purificação , Vibrio cholerae/patogenicidade , Vibrio cholerae O1/genética , Vibrio cholerae O1/isolamento & purificação , Vibrio cholerae O1/patogenicidade , Sequenciamento Completo do Genoma
13.
Sci Rep ; 8(1): 10104, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973712

RESUMO

The diversity and basic functional attributes of the gut microbiome of healthy Indians is not well understood. This study investigated the gut microbiome of three Indian communities: individuals residing in rural and urban (n = 49) sea level Ballabhgarh areas and in rural high altitude areas of Leh, Ladakh in North India (n = 35). Our study revealed that the gut microbiome of Indian communities is dominated by Firmicutes followed by Bacteroidetes, Actinobateria and Proteobacteria. Although, 54 core bacterial genera were detected across the three distinct communities, the gut bacterial composition displayed specific signatures and was observed to be influenced by the topographical location and dietary intake of the individuals. The gut microbiome of individuals living in Leh was observed to be significantly similar with a high representation of Bacteroidetes and low abundance of Proteobacteria. In contrast, the gut microbiome of individuals living in Ballabhgarh areas harbored higher number of Firmicutes and Proteobacteria and is enriched with microbial xenobiotic degradation pathways. The rural community residing in sea level Ballabhgarh areas has unique microbiome characterized not only by a higher diversity, but also a higher degree of interindividual homogeneity.


Assuntos
Altitude , Microbioma Gastrointestinal , Actinobacteria/isolamento & purificação , Adolescente , Adulto , Bacteroidetes/isolamento & purificação , Dieta , Feminino , Firmicutes/isolamento & purificação , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Proteobactérias/isolamento & purificação , População Rural , População Urbana
15.
BMC Proc ; 12(Suppl 13): 62, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30807619

RESUMO

Cholera remains a major public health problem in many countries. Poor sanitation and inappropriate clean water supply, insufficient health literacy and community mobilization, absence of national plans and cross-border collaborations are major factors impeding optimal control of cholera in endemic countries. In March 2017, a group of experts from 10 Asian cholera-prone countries that belong to the Initiative against Diarrheal and Enteric Diseases in Africa and Asia (IDEA), together with representatives from the World Health Organization, the US National Institutes of Health, International Vaccine Institute, Agence de médecine préventive, NGOs (Save the Children) and UNICEF, met in Hanoi (Vietnam) to share progress in terms of prevention and control interventions on water, sanitation and hygiene (WASH), surveillance and oral cholera vaccine use. This paper reports on the country situation, gaps identified in terms of cholera prevention and control and strategic interventions to bridge these gaps.

16.
Sci Rep ; 7(1): 14468, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089611

RESUMO

Emergence of antimicrobial resistant Gram-negative bacteria has created a serious global health crisis and threatens the effectiveness of most, if not all, antibiotics commonly used to prevent and treat bacterial infections. There is a dearth of detailed studies on the prevalence of antimicrobial resistance (AMR) patterns in India. Here, we have isolated and examined AMR patterns of 654 enteric pathogens and investigated complete genome sequences of isolates from six representative genera, which in aggregate encode resistance against 22 antibiotics representing nine distinct drug classes. This study revealed that ~97% isolates are resistant against ≥2 antibiotics, ~24% isolates are resistant against ≥10 antibiotics and ~3% isolates are resistant against ≥15 antibiotics. Analyses of whole genome sequences of six extensive drug resistant enteric pathogens revealed presence of multiple mobile genetic elements, which are physically linked with resistance traits. These elements are therefore appearing to be responsible for disseminating drug resistance among bacteria through horizontal gene transfer. The present study provides insights into the linkages between the resistance patterns to certain antibiotics and their usage in India. The findings would be useful to understand the genetics of resistance traits and severity of and difficulty in tackling AMR enteric pathogens.


Assuntos
Farmacorresistência Bacteriana/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Microbioma Gastrointestinal/genética , Antibacterianos/farmacologia , Bactérias/genética , Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Índia , Testes de Sensibilidade Microbiana , Fenótipo , Sequenciamento Completo do Genoma
17.
Sci Rep ; 7(1): 15438, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133866

RESUMO

The gastric microbiome is suspected to have a role in the causation of diseases by Helicobacter pylori. Reports on their relative abundance vis-à-vis H. pylori are available from various ethnic and geographic groups, but little is known about their interaction patterns. Endoscopic mucosal biopsy samples from the gastric antrum and corpus of 39 patients with suspected H. pylori infection were collected and microbiomes were analyzed by 16S rDNA profiling. Four groups of samples were identified, which harbored Helicobacter as well as a diverse group of bacteria including Lactobacillus, Halomonas and Prevotella. There was a negative association between the microbiome diversity and Helicobacter abundance. Network analyses showed that Helicobacter had negative interactions with members of the gastric microbiome, while other microbes interacted positively with each other, showing a higher tendency towards intra-cluster co-occurrence/co-operation. Cross-geographic comparisons suggested the presence of region-specific microbial abundance profiles. We report the microbial diversity, abundance variation and interaction patterns of the gastric microbiota of Indian patients with H. pylori infection and present a comparison of the same with the gastric microbial ecology in samples from different geographic regions. Such microbial abundance profiles and microbial interactions can help in understanding the pathophysiology of gastric ailments and can thus help in development of new strategies to curb it.


Assuntos
Mucosa Gástrica/microbiologia , Microbioma Gastrointestinal/fisiologia , Infecções por Helicobacter/microbiologia , Interações Microbianas , Adulto , Idoso , Idoso de 80 Anos ou mais , DNA Bacteriano/isolamento & purificação , Feminino , Halomonas/isolamento & purificação , Halomonas/fisiologia , Helicobacter pylori/isolamento & purificação , Helicobacter pylori/fisiologia , Humanos , Índia , Lactobacillus/isolamento & purificação , Lactobacillus/fisiologia , Masculino , Pessoa de Meia-Idade , Prevotella/isolamento & purificação , Prevotella/fisiologia , RNA Ribossômico 16S/genética , Adulto Jovem
19.
Asia Pac J Clin Nutr ; 26(5): 957-971, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28802306

RESUMO

BACKGROUND AND OBJECTIVES: The human being is a complex entity, involving interaction between microbes and the human host. Evidence shows that the nutritional value of food is influenced in part by the structure and operations of an individual's gut microbial community, and food in turn shapes the individual's microbiome. A conference was held to promote understanding of the intestinal microbiome and its implications for health and disease, particularly among Asian populations. METHODS AND STUDY DESIGN: Papers describing 1) the intestinal ecosystem in Asian populations, 2) changes in intestinal microbiota through life and its effects, 3) the Asian gut microbiota in disease conditions, 4) indigenous probiotics to maintain a healthy gut microbiota, 5) probiotic regulation in an Asian country, and 6) the results of a panel discussion are included in this report. CONCLUSIONS: The gut microbial inhabitants of Asian people differ from those of Europe and North America. Geographic location, diet, and ethnic background influence intestinal microbial composition. Urbanization and economic development have brought changes in traditional Asian diets, which in turn affected the gut microbiome, contributing to a shift in the region's health burden from infectious diseases to non-communicable chronic diseases. Novel probiotic strains of Indonesian origin demonstrated significant enhancement of humoral immune response in human studies. Knowledge gaps and implications for research to further understand the Asian gut microbiome were discussed.


Assuntos
Dieta , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Probióticos , Antibacterianos , Sudeste Asiático , Pesquisa Biomédica , Microbioma Gastrointestinal/efeitos dos fármacos , Saúde Global , Humanos
20.
Lancet ; 390(10101): 1539-1549, 2017 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-28302312

RESUMO

Cholera is an acute, watery diarrhoeal disease caused by Vibrio cholerae of the O1 or O139 serogroups. In the past two centuries, cholera has emerged and spread from the Ganges Delta six times and from Indonesia once to cause global pandemics. Rational approaches to the case management of cholera with oral and intravenous rehydration therapy have reduced the case fatality of cholera from more than 50% to much less than 1%. Despite improvements in water quality, sanitation, and hygiene, as well as in the clinical treatment of cholera, the disease is still estimated to cause about 100 000 deaths every year. Most deaths occur in cholera-endemic settings, and virtually all deaths occur in developing countries. Contemporary understanding of immune protection against cholera, which results from local intestinal immunity, has yielded safe and protective orally administered cholera vaccines that are now globally stockpiled for use in the control of both epidemic and endemic cholera.


Assuntos
Cólera/epidemiologia , Cólera/terapia , Surtos de Doenças/prevenção & controle , Hidratação/métodos , Vibrio cholerae/isolamento & purificação , Cólera/fisiopatologia , Diarreia/etiologia , Humanos , Indonésia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA