Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37662361

RESUMO

We present BundleCleaner, an unsupervised multi-step framework that can filter, denoise and subsample bundles derived from diffusion MRI-based whole-brain tractography. Our approach considers both the global bundle structure and local streamline-wise features. We apply BundleCleaner to bundles generated from single-shell diffusion MRI data in an independent clinical sample of older adults from India using probabilistic tractography and the resulting 'cleaned' bundles can better align with the atlas bundles with reduced overreach. In a downstream tractometry analysis, we show that the cleaned bundles, represented with less than 20% of the original set of points, can robustly localize along-tract microstructural differences between 32 healthy controls and 34 participants with Alzheimer's disease ranging in age from 55 to 84 years old. Our approach can help reduce memory burden and improving computational efficiency when working with tractography data, and shows promise for large-scale multi-site tractometry.

2.
Int J Pharm ; 627: 122189, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36100147

RESUMO

We explored the potential of cellulose nanofiber (CNF) for designing prolonged-release, thin-film drug delivery systems (TF-DDS). These delivery systems can be used as locally deployable drug-releasing scaffolds for achieving spatial and temporal control over therapeutic concentration in target tissues. Using doxorubicin (DOX) as a model anticancer drug, CNF-based TF-DDS were prepared using different film-formation processes, such as solvent casting and lyophilization. Formulations were prepared with or without the incorporation of additional macromolecular additives, such as gelatin, to include further biomechanical functionality. We studied the films for their mechanical properties, thermal stability, wettability, porosity and in vitro drug release properties. Our experimental results showed that CNF-based films, when prepared via solvent casting method, showed optimized performance in terms of DOX loading, and prolonged-release than those prepared via lyophilization-based fabrication processes. Scanning electron microscopy (SEM) analysis of the CNF-based films showed uniform distribution of fiber entanglement, which provided the scaffolds with sufficient porosity and tortuosity contributing to the sustained release of the drug from the delivery system. We also observed that surface layering of gelatin on CNF films via dip-coating significantly increased the mechanical strength and reduced the wettability of the films, and as such, affected drug release kinetics. The performance of the TF-DDS was evaluated in-vitro against two pancreatic cancer cell lines, i.e. MIA PaCa-2 and PANC-1. We observed that, along with the enhancement of mean dissolution time (MDT) of DOX, CNF-based TF-DDS were able to suppress the proliferation of pancreatic cancer cells in a time-dependent fashion, indicating that the drug liberated from the films were therapeutically active against cancer cells. Additionally, TF-DDS were also tested ex-vivo on patient-derived xenograft (PDX) model of pancreatic ductal adenocarcinoma (PDAC). We observed that DOX released from the TF-DDS was able to reduce Ki-67 positive, pancreatic cancer cells in these models.


Assuntos
Nanofibras , Neoplasias Pancreáticas , Humanos , Celulose , Preparações de Ação Retardada , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Gelatina , Antígeno Ki-67 , Neoplasias Pancreáticas/tratamento farmacológico , Solventes , Animais
3.
ACS Appl Mater Interfaces ; 13(34): 40229-40248, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34423963

RESUMO

Drug delivery systems (DDS) that can temporally control the rate and extent of release of therapeutically active molecules find applications in many clinical settings, ranging from infection control to cancer therapy. With an aim to design a locally implantable, controlled-release DDS, we demonstrated the feasibility of using cellulose nanocrystal (CNC)-reinforced poly (l-lactic acid) (PLA) composite beads. The performance of the platform was evaluated using doxorubicin (DOX) as a model drug for applications in triple-negative breast cancer. A facile, nonsolvent-induced phase separation (NIPS) method was adopted to form composite beads. We observed that CNC loading within these beads played a critical role in the mechanical stability, porosity, water uptake, diffusion, release, and pharmacological activity of the drug from the delivery system. When loaded with DOX, composite beads significantly controlled the release of the drug in a pH-dependent pattern. For example, PLA/CNC beads containing 37.5 wt % of CNCs showed a biphasic release of DOX, where 41 and 82% of the loaded drug were released at pH 7.4 and pH 5.5, respectively, over 7 days. Drug release followed Korsmeyer's kinetics, indicating that the release mechanism was mostly diffusion and swelling-controlled. We showed that DOX released from drug-loaded PLA/CNC composite beads locally suppressed the growth and proliferation of triple-negative breast cancer cells, MBA-MB-231, via the apoptotic pathway. The efficacy of the DDS was evaluated in human tissue explants. We envision that such systems will find applications for designing biobased platforms with programmed stability and drug delivery functions.


Assuntos
Antineoplásicos/uso terapêutico , Preparações de Ação Retardada/química , Doxorrubicina/uso terapêutico , Nanopartículas/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Celulose/química , Doxorrubicina/química , Liberação Controlada de Fármacos , Humanos , Camundongos , Poliésteres/química , Estudo de Prova de Conceito
4.
Mol Pharm ; 18(1): 87-100, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33231464

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), a metabolic disorder, remains one of the leading cancer mortality sources worldwide. An initial response to treatments, such as gemcitabine (GEM), is often followed by emergent resistance reflecting an urgent need for alternate therapies. The PDAC resistance to GEM could be due to ERK1/2 activity. However, successful ERKi therapy is hindered due to low ligand efficiency, poor drug delivery, and toxicity. In this study, to overcome these limitations, we have designed pH-responsive nanoparticles (pHNPs) with a size range of 100-150 nm for the simultaneous delivery of ERKi (SCH 772984) and GEM with tolerable doses. These pHNPs are polyethylene glycol (PEG)-containing amphiphilic polycarbonate block copolymers with tertiary amine side chains. They are systemically stable and capable of improving in vitro and in vivo drug delivery at the cellular environment's acidic pH. The functional analysis indicates that the nanomolar doses of ERKi or GEM significantly decreased the 50% growth inhibition (IC50) of PDAC cells when encapsulated in pHNPs compared to free drugs. The combination of ERKi with GEM displayed a synergistic inhibitory effect. Unexpectedly, we uncover that the minimum effective dose of ERKi significantly promotes GEM activities on PDAC cells. Furthermore, we found that pHNP-encapsulated combination therapy of ERKi with GEM was superior to unencapsulated combination drug therapy. Our findings, thus, reveal a simple, yet efficient, drug delivery approach to overcome the limitations of ERKi for clinical applications and present a new model of sensitization of GEM by ERKi with no or minimal toxicity.


Assuntos
Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Portadores de Fármacos/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Nanopartículas/química , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Nus , Polietilenoglicóis/química , Polímeros/química , Inibidores de Proteínas Quinases/química , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Gencitabina
5.
J Cell Commun Signal ; 13(3): 407-420, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30915617

RESUMO

Limited effectiveness of Raf and MEK inhibitors has impelled the interest to use the inhibitors of Extra-cellular Receptor Kinase (ERK) pathway in combination with Gemcitabine (GEM) in pancreatic cancer. However, off-target abundance of ERK receptors, challenging physico-chemical properties, and dose-limiting toxicity of the inhibitor has presented critical challenges towards fabricating this combination amenable for clinical translation. Herein we report a pharmaceutical nanoformulation of GEM and an ERK inhibitor (SCH 772984) co-stabilized within a pH-sensing nanocarrier (NC, with a hydrodynamic diameter of 161 ± 5.0 nm). The NCs were modularly derived from a triblock, self-assembling copolymer, and were chemically conjugated with GEM and encapsulated with SCH772984 at a loading content of 20.2% and 18.3%, respectively. Through pH-mediated unfolding of the individual blocks of the copolymer, the NCs were able to control the release of encapsulated drugs, traffic through cellular membranes, engage target receptors, suppress proliferation of pancreatic cancer cells, and accumulate at disease sites. Collectively our studies showed the feasibility of co-delivery of a combination chemotherapy consisting of GEM and an ERK inhibitor from a NC platform, which can sense and respond to tumor microenvironment of pancreatic cancer setting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA