Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 81(9): 1894-1913, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32666944

RESUMO

A silver phosphate/hydroxyapatite (Ag3PO4/HA) composite was produced from phosphate waste rocks, firstly by the valorization of these wastes to HA and then by the treatment of this prepared HA with a silver nitrate solution. A type of response surface methodology, Box-Behnken experimental design, was used to find optimum synthesis parameters (silver to HA weight ratios, calcination temperature and calcination time). The visible light photodegradation of Rhodamine B in aqueous solution was used as the experimental response. The analysis of variance for the results showed that silver weight ratio is the most influential parameter on photoactivity of the synthesized photocatalyst. The optimum conditions were predicted to give an RhB degradation yield of 98.609%/4 hours under visible light conditions. In this context, a Ag/HA weight ratio of 14%, a calcination temperature of 300 °C, and a calcination time of 30 min were found to be the optimum conditions. Samples synthesized under the optimum condition were characterized by the use of X-ray diffraction, X-ray fluorescence spectrometer, Fourier transform infrared spectrum analysis, scanning electron microscopy, transmission electron microscopy and ultraviolet-visible diffuse reflection spectroscopy. By comparison with pure HA, the characterization results clearly showed the successful synthesis of the Ag3PO4/HA composite.


Assuntos
Durapatita , Luz , Catálise , Rodaminas
2.
Chemosphere ; 241: 125009, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31597109

RESUMO

Iron (III) was incorporated, to the surface of a synthesized ZnO, using two nominal molar percentages of Fe (III): 1% and 5% Fe relative to ZnO. Samples dried and calcined at 200 °C and 400 °C for 2 h, were characterized by XRD, XPS, XRF, N2-adsorption-BET and (UV-vis)-DRS. Photocatalytic activities of the catalysts were assessed based on the degradation of rhodamine B (RhB) and caffeine (CAF) in aqueous solution under two irradiation conditions: UV and visible light illumination. Prior to the photocatalytic tests, the interaction of each one of the substrates with either Fe(III) or Fe(II) was studied in homogeneous medium under UV-illumination and oxygenated environment. It was found that Fe (III) can play an important role in homogeneous media in the photoassisted degradation, both of rhodamine B and caffeine, while Fe (II) does not exert a relevant role in the photoassisted degradation of the referred substrates. Fe-ZnO samples display similar or poorer performance than pure ZnO in the presence of UV light for both studied substrates. The phenomenon can be attributed to the formation of either goethite or ZnFe2O4 at the ZnO surface where the coupled Fe3+/Fe2+ can act as recombination centers for the photogenerated charges. On the contrary, all Fe-ZnO samples showed enhanced photocatalytic activity under visible illumination which seems to be independent of the iron content. In this context, the mechanisms for photoassisted degradation of both the substrates in homogeneous medium and photocatalytic degradation are discussed, as well as the role of Fe in the photodegradation processes.


Assuntos
Cafeína/química , Compostos Férricos/farmacologia , Fotólise/efeitos dos fármacos , Rodaminas/química , Óxido de Zinco/química , Adsorção , Cafeína/efeitos da radiação , Catálise , Compostos Férricos/química , Ferro/química , Luz , Rodaminas/efeitos da radiação , Raios Ultravioleta , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA