Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 1): 130954, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499125

RESUMO

Designing multifunctional wound dressings is a prerequisite to prevent infection and stimulate healing. In this study, a bilayer scaffold (BS) with a top layer (TL) comprising 3D printed pectin/polyacrylic acid/platelet rich fibrin hydrogel (Pec/PAA/PRF) and a bottom nanofibrous layer (NL) containing Pec/PAA/simvastatin (SIM) was produced. The biodegradable and biocompatible polymers Pec and PAA were cross-linked to form hydrogels via Ca2+ activation through galacturonate linkage and chelation, respectively. PRF as an autologous growth factor (GF) source and SIM together augmented angiogenesis and neovascularization. Because of 3D printing, the BS possessed a uniform distribution of PRF in TL and an average fiber diameter of 96.71 ± 18.14 nm was obtained in NL. The Young's modulus of BS was recorded as 6.02 ± 0.31 MPa and its elongation at break was measured as 30.16 ± 2.70 %. The wound dressing gradually released growth factors over 7 days of investigation. Furthermore, the BS significantly outperformed other groups in increasing cell viability and in vivo wound closure rate (95.80 ± 3.47 % after 14 days). Wounds covered with BS healed faster with more collagen deposition and re-epithelialization. The results demonstrate that the BS can be a potential remedy for skin tissue regeneration.


Assuntos
Fibrina Rica em Plaquetas , Sinvastatina/farmacologia , Sinvastatina/metabolismo , Pectinas/farmacologia , Pectinas/metabolismo , Pele/metabolismo , Impressão Tridimensional
2.
Int J Pharm ; 653: 123931, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38387821

RESUMO

Despite the advances in medicine, wound healing is still challenging and piques the interest of biomedical engineers to design effective wound dressings using natural and artificial polymers. In present study, coaxial electrospinning was employed to fabricate core-shell nanofiber-based wound dressing, with core composed of polyacrylamide (PAAm) and shell comprising 0.5 % solution of L-Arginine (L-Arg) in aloe vera and keratin (AloKr). Aloe vera and keratin were added as natural polymers to promote angiogenesis, reduce inflammation, and provide antibacterial activity, whereas PAAm in core was used to improve the tensile properties of the wound dressing. Moreover, L-Arg was incorporated in shell to promote angiogenesis and collagen synthesis. The fiber diameter of PAAm/(AloKr/L-Arg) core-shell fibers was (93.33 ± 35.11 nm) with finer and straighter fibers and higher water holding capacity due to increased surface area to volume ratio. In terms of tensile properties, the PAAm/(AloKr/L-Arg) core-shell nanofibers with tensile strength and elastic modulus of 2.84 ± 0.27 MPa and 62.15 ± 5.32 MPa, respectively, showed the best mechanical performance compared to other nanofibers tested. Furthermore, PAAm/(AloKr/L-Arg) exhibited the highest L-Arg release (87.62 ± 3.02 %) and viability of L929 cells in vitro compared to other groups. In addition, the highest rate of in vivo full thickness wound healing was observed in PAAm/(AloKr/L-Arg) group compared to other groups. It significantly enhanced the angiogenesis, neovascularization, and cell proliferation. The prepared PAAm/(AloKr/L-Arg) core-shell nanofibrous dressing could be promising for full-thickness wound healing.


Assuntos
Aloe , Nanofibras , Angiogênese , Cicatrização , Polímeros , Arginina , Queratinas
3.
J Biomater Sci Polym Ed ; 35(6): 823-850, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38300323

RESUMO

Polymethyl methacrylate (PMMA) bone cement is commonly used in orthopedic surgeries to fill the bone defects or fix the prostheses. These cements are usually containing amounts of a nonbioactive radiopacifying agent such as barium sulfate and zirconium dioxide, which does not have a good interface compatibility with PMMA, and the clumps formed from these materials can scratch metal counterfaces. In this work, graphene oxide encapsulated baghdadite (GOBgh) nanoparticles were applied as radiopacifying and bioactive agent in a PMMA bone cement containing 2 wt.% of vancomycin (VAN). The addition of 20 wt.% of GOBgh (GOBgh20) nanoparticles to PMMA powder caused a 33.6% increase in compressive strength and a 70.9% increase in elastic modulus compared to the Simplex® P bone cement, and also enhanced the setting properties, radiopacity, antibacterial activity, and the apatite formation in simulated body fluid. In vitro cell assessments confirmed the increase in adhesion and proliferation of MG-63 cells as well as the osteogenic differentiation of human adipose-derived mesenchymal stem cells on the surface of PMMA-GOBgh20 cement. The chorioallantoic membrane assay revealed the excellent angiogenesis activity of nanocomposite cement samples. In vivo experiments on a rat model also demonstrated the mineralization and bone integration of PMMA-GOBgh20 cement within four weeks. Based on the promising results obtained, PMMA-GOBgh20 bone cement is suggested as an optimal sample for use in orthopedic surgeries.


Assuntos
Cerâmica , Grafite , Nanocompostos , Polimetil Metacrilato , Silicatos , Humanos , Ratos , Animais , Cimentos Ósseos , Vancomicina/farmacologia , Osteogênese , Teste de Materiais
4.
J Funct Biomater ; 11(2)2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32295032

RESUMO

Biodegradable Mg alloys have appeared as the most appealing metals for biomedical applications, particularly as temporary bone implants. However, issues regarding high corrosion rate and biocompatibility restrict their application. Hence, in the present work, nanostructured clinoenstatite (CLT, MgSiO3)/tantalum nitride (TaN) was deposited on the Mg-Ca-Zn alloy via electrophoretic deposition (EPD) along with physical vapor deposition (PVD) to improve the corrosion and biological characteristics of the Mg-Ca-Zn alloy. The TaN intermediate layer with bubble like morphology possessed a compact and homogenous structure with a thickness of about 950 nm while the thick CLT over-layer (~15 µm) displayed a less compact structure containing nano-porosities as well as nanoparticles with spherical morphology. The electrochemical tests demonstrated that the as prepared CLT/TaN film is able to substantially increase the anticorrosion property of Mg-Ca-Zn bare alloy. Cytocompatibility outcomes indicated that formation of CLT and TaN on the Mg bare alloy surface enhanced cell viability, proliferation and growth, implying excellent biocompatibility. Taken together, the CLT/TaN coating exhibits appropriate characteristic including anticorrosion property and biocompatibility in order to employ in biomedical files.

5.
J Mech Behav Biomed Mater ; 77: 534-538, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29054090

RESUMO

In the present work, the releasing heat, scaffold apatite formation, and magnetic behavior of a novel diopside-magnetite nanocomposite with various contents of magnetite (Fe3O4) were evaluated. The N´eel and Brown relaxations did not have a significant effect on the specific absorption rate (SAR) of the composite samples. Indeed, magnetic saturation, Ms, indicated a crucial effect on the heat release of the samples. The sample with 30wt% magnetite had the highest value of SAR, while the sample with 20wt% magnetite, in the form of scaffold, allowed the high amount of apatite formation on its surface.


Assuntos
Óxido Ferroso-Férrico/química , Temperatura Alta , Nanopartículas/química , Ácido Silícico/química , Calorimetria , Cerâmica , Força Compressiva , Magnetismo , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanocompostos , Porosidade , Pós , Pressão , Difração de Raios X
6.
J Mech Behav Biomed Mater ; 72: 171-181, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28499165

RESUMO

In the present study, diopside nanopowders were prepared via mechanical milling with eggshell as the calcium source. The space holder method (compaction of ceramic powder and spacer) as one of the most important methods to produce ceramic/metal scaffolds was used to produce diopside scaffolds. For the first time, the effect of the spacer size on mechanical properties and porosity of the obtained scaffolds was experimentally discussed. According to the results obtained, the NaCl particles (as the spacer) with the size of 400-600µm maintained their original spherical shape during the compaction and sintering processes. As a new work, the most important parameters including the spacer type, spacer concentration, spacer size, and applied pressure were considered, and their effects on mechanical properties and porosity of diopside scaffolds were simulated. Gene Expression Programming (GEP), as one of the most branches of the artificial intelligence, was used for simulation process. By using the GEP, two equations were introduced to predict the compressive strength and porosity of the obtained scaffolds with the lowest error values. The 3D diagrams extracted from the model were used to evaluate the combined effect of the process parameters on the compressive strength and porosity of the scaffolds. The GEP model presented in this work has a very low level of error and a high level of the squared regression for predicting the compressive strength and porosity of diopside scaffolds.


Assuntos
Força Compressiva , Nanopartículas/análise , Ácido Silícico/análise , Alicerces Teciduais , Teste de Materiais , Modelos Teóricos , Tamanho da Partícula , Porosidade , Engenharia Tecidual
7.
J Mech Behav Biomed Mater ; 69: 242-248, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28107739

RESUMO

In the present study, for the first time, the space holder method was used to prepare akermanite scaffolds with high porous structures, high interconnectivity, and high compressive strength, while the role of different spacer sizes on the akermanite scaffold properties was also evaluated. The results showed that the increase in the NaCl particle size which was used as spacer leads to an increase of the pore size and interconnectivity and a decrease of compressive strength. When the size of the spacer was 420-600µm and more than 600µm, a total porosity of 82 and 83% and a compressive strength of 0.86 and 0.82MPa were obtained, respectively. These values are higher than those reported in previously studies and provide a great potential for akermanite to be used as bone substitute in tissue engineering. The in vitro bioactivity of the obtained akermanite scaffolds was also investigated.


Assuntos
Cerâmica , Teste de Materiais , Alicerces Teciduais , Substitutos Ósseos , Força Compressiva , Porosidade , Engenharia Tecidual
8.
Mater Sci Eng C Mater Biol Appl ; 72: 259-267, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28024584

RESUMO

In the present study three akermanite (Ca2MgSi2O7), diopside (CaMgSi2O6) and baghdadite (Ca3ZrSi2O9) applicable bioceramics were synthesized via a sol-gel based method. The combination of sol-gel method and the raw materials used in this study presents a new route for the synthesis of the mentioned bioceramics. By the use of thermal analysis, the mechanisms occurred during the synthesis of these bioceramics were investigated. The differences in the structural density and their relation with the degradation rate and mechanical properties of all three ceramics were studied. In vitro bioactivity and apatite formation mechanisms of the samples soaked in the simulated body fluid were considered. The results showed that baghdadite as a Zr-containing material has a more dense structure in comparison with the other ceramics, which leads to a lower degradation rate and also lower bioactivity. There were also main differences between akermanite and diopside as Mg-containing ceramics. Diopside showed a structure with lower porosity content compared to the akermanite samples which resulted in the lower degradation rate and higher compressive strength.


Assuntos
Materiais Biocompatíveis/química , Cerâmica/química , Silicatos/química , Ácido Silícico/química , Materiais Biocompatíveis/síntese química , Géis/química , Microscopia Eletrônica de Varredura , Nanoestruturas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA