Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(19): 195001, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38804956

RESUMO

Experiments were performed on laser wakefield acceleration in the highly nonlinear regime. With laser powers P<250 TW and using an initial spot size larger than the matched spot size for guiding, we were able to accelerate electrons to energies E_{max}>2.5 GeV, in fields exceeding 500 GV m^{-1}, with more than 80 pC of charge at energies E>1 GeV. Three-dimensional particle-in-cell simulations show that using an oversized spot delays injection, avoiding beam loss as the wakefield undergoes length oscillation. This enables injected electrons to remain in the regions of highest accelerating fields and leads to a doubling of energy gain as compared to results from using half the focal length with the same laser.

2.
Sci Rep ; 14(1): 6001, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472232

RESUMO

The rapid progress that plasma wakefield accelerators are experiencing is now posing the question as to whether they could be included in the design of the next generation of high-energy electron-positron colliders. However, the typical structure of the accelerating wakefields presents challenging complications for positron acceleration. Despite seminal proof-of-principle experiments and theoretical proposals, experimental research in plasma-based acceleration of positrons is currently limited by the scarcity of positron beams suitable to seed a plasma accelerator. Here, we report on the first experimental demonstration of a laser-driven source of ultra-relativistic positrons with sufficient spectral and spatial quality to be injected in a plasma accelerator. Our results indicate, in agreement with numerical simulations, selection and transport of positron beamlets containing N e + ≥ 10 5 positrons in a 5% bandwidth around 600 MeV, with femtosecond-scale duration and micron-scale normalised emittance. Particle-in-cell simulations show that positron beams of this kind can be guided and accelerated in a laser-driven plasma accelerator, with favourable scalings to further increase overall charge and energy using PW-scale lasers. The results presented here demonstrate the possibility of performing experimental studies of positron acceleration in a laser-driven wakefield accelerator.

3.
Phys Rev Lett ; 131(1): 015101, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478421

RESUMO

We describe the direct measurement of the expulsion of a magnetic field from a plasma driven by heat flow. Using a laser to heat a column of gas within an applied magnetic field, we isolate Nernst advection and show how it changes the field over a nanosecond timescale. Reconstruction of the magnetic field map from proton radiographs demonstrates that the field is advected by heat flow in advance of the plasma expansion with a velocity v_{N}=(6±2)×10^{5} m/s. Kinetic and extended magnetohydrodynamic simulations agree well in this regime due to the buildup of a magnetic transport barrier.

4.
Phys Rev Lett ; 129(11): 114801, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36154426

RESUMO

Premature relativistic transparency of ultrathin, laser-irradiated targets is recognized as an obstacle to achieving a stable radiation pressure acceleration in the "light sail" (LS) mode. Experimental data, corroborated by 2D PIC simulations, show that a few-nm thick overcoat surface layer of high Z material significantly improves ion bunching at high energies during the acceleration. This is diagnosed by simultaneous ion and neutron spectroscopy following irradiation of deuterated plastic targets. In particular, copious and directional neutron production (significantly larger than for other in-target schemes) arises, under optimal parameters, as a signature of plasma layer integrity during the acceleration.

5.
Rev Sci Instrum ; 93(5): 053303, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649771

RESUMO

Image plates (IPs) are a popular detector in the field of laser driven ion acceleration, owing to their high dynamic range and reusability. An absolute calibration of these detectors to laser-driven protons in the routinely produced tens of MeV energy range is, therefore, essential. In this paper, the response of Fujifilm BAS-TR IPs to 1-40 MeV protons is calibrated by employing the detectors in high resolution Thomson parabola spectrometers in conjunction with a CR-39 nuclear track detector to determine absolute proton numbers. While CR-39 was placed in front of the image plate for lower energy protons, it was placed behind the image plate for energies above 10 MeV using suitable metal filters sandwiched between the image plate and CR-39 to select specific energies. The measured response agrees well with previously reported calibrations as well as standard models of IP response, providing, for the first time, an absolute calibration over a large range of proton energies of relevance to current experiments.

6.
Phys Rev Lett ; 127(19): 194801, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34797126

RESUMO

We report on the selective acceleration of carbon ions during the interaction of ultrashort, circularly polarized and contrast-enhanced laser pulses, at a peak intensity of 5.5×10^{20} W/cm^{2}, with ultrathin carbon foils. Under optimized conditions, energies per nucleon of the bulk carbon ions reached significantly higher values than the energies of contaminant protons (33 MeV/nucleon vs 18 MeV), unlike what is typically observed in laser-foil acceleration experiments. Experimental data, and supporting simulations, emphasize different dominant acceleration mechanisms for the two ion species and highlight an (intensity dependent) optimum thickness for radiation pressure acceleration; it is suggested that the preceding laser energy reaching the target before the main pulse arrives plays a key role in a preferential acceleration of the heavier ion species.

7.
Nat Commun ; 11(1): 6355, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311487

RESUMO

Laser wakefield accelerators promise to revolutionize many areas of accelerator science. However, one of the greatest challenges to their widespread adoption is the difficulty in control and optimization of the accelerator outputs due to coupling between input parameters and the dynamic evolution of the accelerating structure. Here, we use machine learning techniques to automate a 100 MeV-scale accelerator, which optimized its outputs by simultaneously varying up to six parameters including the spectral and spatial phase of the laser and the plasma density and length. Most notably, the model built by the algorithm enabled optimization of the laser evolution that might otherwise have been missed in single-variable scans. Subtle tuning of the laser pulse shape caused an 80% increase in electron beam charge, despite the pulse length changing by just 1%.

9.
Phys Med ; 65: 21-28, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31430582

RESUMO

The Centre for the Clinical Application of Particles' Laser-hybrid Accelerator for Radiobiological Applications (LhARA) facility is being studied and requires simulation of novel accelerator components (such as the Gabor lens capture system), detector simulation and simulation of the ion beam interaction with cells. The first stage of LhARA will provide protons up to 15 MeV for in vitro studies. The second stage of LhARA will use a fixed-field accelerator to increase the energy of the particles to allow in vivo studies with protons and in vitro studies with heavier ions. BDSIM, a Geant4 based accelerator simulation tool, has been used to perform particle tracking simulations to verify the beam optics design done by BeamOptics and these show good agreement. Design parameters were defined based on an EPOCH simulation of the laser source and a series of mono-energetic input beams were generated from this by BDSIM. The tracking results show the large angular spread of the input beam (0.2 rad) can be transported with a transmission of almost 100% whilst keeping divergence at the end station very low (<0.1 mrad). The legacy of LhARA will be the demonstration of technologies that could drive a step-change in the provision of proton and light ion therapy (i.e. a laser source coupled to a Gabor lens capture and a fixed-field accelerator), and a system capable of delivering a comprehensive set of experimental data that can be used to enhance the clinical application of proton and light ion therapy.


Assuntos
Modelos Teóricos , Radiobiologia/instrumentação , Aceleradores de Partículas
10.
Sci Rep ; 9(1): 8551, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189924

RESUMO

We demonstrate here for the first time that charge emitted by laser-target interactions at petawatt peak-powers can be efficiently deposited on a capacitor-collector structure far away from the target and lead to the rapid (tens of nanoseconds) generation of large quasi-static electric fields over wide (tens-of-centimeters scale-length) regions, with intensities much higher than common ElectroMagnetic Pulses (EMPs) generated by the same experiment in the same position. A good agreement was obtained between measurements from a classical field-probe and calculations based on particle-flux measurements from a Thomson spectrometer. Proof-of-principle particle-in-cell simulations reproduced the measurements of field evolution in time, giving a useful insight into the charging process, generation and distribution of fields. The understanding of this charging phenomenon and of the related intense fields, which can reach the MV/m order and in specific configurations might also exceed it, is very important for present and future facilities studying laser-plasma-acceleration and inertial-confinement-fusion, but also for application to the conditioning of accelerated charged-particles, the generation of intense electric and magnetic fields and many other multidisciplinary high-power laser-driven processes.

11.
Sci Rep ; 9(1): 3249, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824838

RESUMO

Laser-wakefield accelerators (LWFAs) are high acceleration-gradient plasma-based particle accelerators capable of producing ultra-relativistic electron beams. Within the strong focusing fields of the wakefield, accelerated electrons undergo betatron oscillations, emitting a bright pulse of X-rays with a micrometer-scale source size that may be used for imaging applications. Non-destructive X-ray phase contrast imaging and tomography of heterogeneous materials can provide insight into their processing, structure, and performance. To demonstrate the imaging capability of X-rays from an LWFA we have examined an irregular eutectic in the aluminum-silicon (Al-Si) system. The lamellar spacing of the Al-Si eutectic microstructure is on the order of a few micrometers, thus requiring high spatial resolution. We present comparisons between the sharpness and spatial resolution in phase contrast images of this eutectic alloy obtained via X-ray phase contrast imaging at the Swiss Light Source (SLS) synchrotron and X-ray projection microscopy via an LWFA source. An upper bound on the resolving power of 2.7 ± 0.3 µm of the LWFA source in this experiment was measured. These results indicate that betatron X-rays from laser wakefield acceleration can provide an alternative to conventional synchrotron sources for high resolution imaging of eutectics and, more broadly, complex microstructures.

12.
Rev Sci Instrum ; 89(11): 113303, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30501337

RESUMO

We present a design for a pixelated scintillator based gamma-ray spectrometer for non-linear inverse Compton scattering experiments. By colliding a laser wakefield accelerated electron beam with a tightly focused, intense laser pulse, gamma-ray photons up to 100 MeV energies and with few femtosecond duration may be produced. To measure the energy spectrum and angular distribution, a 33 × 47 array of cesium-iodide crystals was oriented such that the 47 crystal length axis was parallel to the gamma-ray beam and the 33 crystal length axis was oriented in the vertical direction. Using an iterative deconvolution method similar to the YOGI code, modeling of the scintillator response using GEANT4 and fitting to a quantum Monte Carlo calculated photon spectrum, we are able to extract the gamma ray spectra generated by the inverse Compton interaction.

13.
Phys Rev Lett ; 120(25): 254801, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29979081

RESUMO

We report on the depletion and power amplification of the driving laser pulse in a strongly driven laser wakefield accelerator. Simultaneous measurement of the transmitted pulse energy and temporal shape indicate an increase in peak power from 187±11 TW to a maximum of 318±12 TW after 13 mm of propagation in a plasma density of 0.9×10^{18} cm^{-3}. The power amplification is correlated with the injection and acceleration of electrons in the nonlinear wakefield. This process is modeled by including a localized redshift and subsequent group delay dispersion at the laser pulse front.

14.
Sci Rep ; 8(1): 11010, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030516

RESUMO

Betatron radiation from laser wakefield accelerators is an ultrashort pulsed source of hard, synchrotron-like x-ray radiation. It emanates from a centimetre scale plasma accelerator producing GeV level electron beams. In recent years betatron radiation has been developed as a unique source capable of producing high resolution x-ray images in compact geometries. However, until now, the short pulse nature of this radiation has not been exploited. This report details the first experiment to utilize betatron radiation to image a rapidly evolving phenomenon by using it to radiograph a laser driven shock wave in a silicon target. The spatial resolution of the image is comparable to what has been achieved in similar experiments at conventional synchrotron light sources. The intrinsic temporal resolution of betatron radiation is below 100 fs, indicating that significantly faster processes could be probed in future without compromising spatial resolution. Quantitative measurements of the shock velocity and material density were made from the radiographs recorded during shock compression and were consistent with the established shock response of silicon, as determined with traditional velocimetry approaches. This suggests that future compact betatron imaging beamlines could be useful in the imaging and diagnosis of high-energy-density physics experiments.

15.
Phys Rev Lett ; 119(18): 185002, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29219555

RESUMO

We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε_{B}≈10^{-3} is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

16.
Sci Rep ; 7(1): 983, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28428549

RESUMO

We report on the development and deployment of an optical diagnostic for single-shot measurement of the electric-field components of electromagnetic pulses from high-intensity laser-matter interactions in a high-noise environment. The electro-optic Pockels effect in KDP crystals was used to measure transient electric fields using a geometry easily modifiable for magnetic field detection via Faraday rotation. Using dielectric sensors and an optical fibre-based readout ensures minimal field perturbations compared to conductive probes and greatly limits unwanted electrical pickup between probe and recording system. The device was tested at the Vulcan Petawatt facility with 1020 W cm-2 peak intensities, the first time such a diagnostic has been used in this regime. The probe crystals were located ~1.25 m from target and did not require direct view of the source plasma. The measured signals compare favourably with previously reported studies from Vulcan, in terms of the maximum measured intra-crystal field of 10.9 kV/m, signal duration and detected frequency content which was found to match the interaction chamber's horizontal-plane fundamental harmonics of 76 and 101 MHz. Methods for improving the diagnostic for future use are also discussed in detail. Orthogonal optical probes offer a low-noise alternative for direct simultaneous measurement of each vector field component.

17.
Phys Rev Lett ; 115(9): 094802, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26371658

RESUMO

We report on reproducible shock acceleration from irradiation of a λ=10 µm CO_{2} laser on optically shaped H_{2} and He gas targets. A low energy laser prepulse (I≲10^{14} W cm^{-2}) is used to drive a blast wave inside the gas target, creating a steepened, variable density gradient. This is followed, after 25 ns, by a high intensity laser pulse (I>10^{16} W cm^{-2}) that produces an electrostatic collisionless shock. Upstream ions are accelerated for a narrow range of prepulse energies. For long density gradients (≳40 µm), broadband beams of He^{+} and H^{+} are routinely produced, while for shorter gradients (≲20 µm), quasimonoenergetic acceleration of protons is observed. These measurements indicate that the properties of the accelerating shock and the resultant ion energy distribution, in particular the production of narrow energy spread beams, is highly dependent on the plasma density profile. These findings are corroborated by 2D particle-in-cell simulations.

18.
Phys Rev Lett ; 115(5): 055002, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26274425

RESUMO

We present few-femtosecond shadowgraphic snapshots taken during the nonlinear evolution of the plasma wave in a laser wakefield accelerator with transverse synchronized few-cycle probe pulses. These snapshots can be directly associated with the electron density distribution within the plasma wave and give quantitative information about its size and shape. Our results show that self-injection of electrons into the first plasma-wave period is induced by a lengthening of the first plasma period. Three-dimensional particle-in-cell simulations support our observations.

19.
Sci Rep ; 5: 13244, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26283308

RESUMO

A bright µm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 µm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications.


Assuntos
Fêmur/diagnóstico por imagem , Imageamento Tridimensional/instrumentação , Lasers , Aceleradores de Partículas/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Absorciometria de Fóton/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Aumento da Imagem/instrumentação , Técnicas In Vitro , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Rev Sci Instrum ; 86(7): 073308, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233373

RESUMO

Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.


Assuntos
Calibragem , Lasers , Nêutrons , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA