Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Psychiatry ; 13: 885433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958665

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social and communication impairments and restricted and repetitive behavior. Although there is currently no established cure for ASD, early interventions for deficits of attention to other individuals are expected to reduce the progression of ASD symptoms in later life. To confirm this hypothesis and improve early therapeutic interventions, it is desirable to develop an animal model of ASD in which social attention is impaired in childhood and ASD-like social behavior is observed in adulthood. However, rodent models of ASD have difficulty in recapitulating the deficit of gaze-based social attention. In this study, we examined the direction of gaze toward other conspecifics during childhood and puberty in a three-chamber test setting using an ASD marmoset model produced by maternal exposure to valproic acid (VPA). We also conducted a reversal learning test in adult VPA-exposed marmosets as an indicator of perseveration, a core symptom of ASD that has not previously been investigated in this model. The results showed that time spent gazing at other conspecifics was reduced in VPA-exposed marmosets in childhood, and that mature animals persisted with previous strategies that required long days for acquisition to pass the test. In a longitudinal study using the same animals, deficits in social attention in childhood correlated well with ASD-like social disturbance (inequity aversion and third-party reciprocity) and inflexible behavior in adulthood. Since VPA-exposed marmosets exhibit these diverse ASD-like behaviors that are consistent from childhood to adulthood, VPA-exposed marmosets will provide a valuable means of elucidating mechanisms for early intervention and contribute to the development of early therapies.

2.
Front Behav Neurosci ; 16: 943759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035018

RESUMO

Individuals with autism spectrum disorder (ASD) are exposed to a variety of stressors owing to their behavioral traits. Cortisol is a hormone typically associated with stress, and its concentration and response to stress are higher in individuals with ASD than in controls. The mechanisms underlying cortisol dysregulation in ASD have been explored in rodents. Although rodent models have successfully replicated the major symptoms of autism (i.e., impaired vocal communication, social interaction deficits, and restricted/repetitive patterns of behavior), evidence suggests that the hypothalamic-pituitary-adrenal (HPA) axis system differs between rodents and primates. We developed an ASD model in the common marmoset (Callithrix jacchus), a New World monkey, utilizing prenatal exposure to valproic acid (VPA). In this study, we collected the salivary cortisol levels in VPA-exposed and unexposed marmosets in the morning and afternoon. Our results revealed that both VPA-exposed and unexposed marmosets showed similar diurnal changes in cortisol levels, which were lower in the afternoon than in the morning. However, heightened cortisol levels were observed throughout the day in VPA-exposed marmosets. These results are consistent with those of ASD in humans. Our results suggest that VPA-exposed marmosets show similarities not only in their behavioral patterns and brain pathologies, which we have reported previously, but also in hormonal regulation, validating the usefulness of VPA-exposed marmosets also as a tool for ASD stress research.

3.
Nat Commun ; 12(1): 5388, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526497

RESUMO

Autism spectrum disorder (ASD) is a multifactorial disorder with characteristic synaptic and gene expression changes. Early intervention during childhood is thought to benefit prognosis. Here, we examined the changes in cortical synaptogenesis, synaptic function, and gene expression from birth to the juvenile stage in a marmoset model of ASD induced by valproic acid (VPA) treatment. Early postnatally, synaptogenesis was reduced in this model, while juvenile-age VPA-treated marmosets showed increased synaptogenesis, similar to observations in human tissue. During infancy, synaptic plasticity transiently increased and was associated with altered vocalization. Synaptogenesis-related genes were downregulated early postnatally. At three months of age, the differentially expressed genes were associated with circuit remodeling, similar to the expression changes observed in humans. In summary, we provide a functional and molecular characterization of a non-human primate model of ASD, highlighting its similarity to features observed in human ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Modelos Animais de Doenças , Potenciais Evocados/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Transmissão Sináptica/fisiologia , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/genética , Callithrix , Espinhas Dendríticas/fisiologia , Estimulação Elétrica , Perfilação da Expressão Gênica/métodos , Humanos , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Técnicas de Patch-Clamp/métodos , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Ácido Valproico
4.
Front Cell Neurosci ; 13: 344, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417364

RESUMO

Autism spectrum disorder (ASD) is one of the most widespread neurodevelopmental disorders, characterized by impairment in social interactions, and restricted stereotyped behaviors. Using immunohistochemistry and positron emission tomography (PET), several studies have provided evidence of the existence of activated microglia in ASD patients. Recently, we developed an animal model of ASD using the new world monkey common marmoset (Callithrix jacchus) and demonstrated ASD-like social impairment after the in utero administration of valproic acid (VPA). To characterize microglia in this marmoset model of ASD from early toddler to adult, morphological analyses of microglia in VPA marmosets and age-matched unexposed (UE) marmosets were performed using immunohistochemistry for microglia-specific markers, Iba1, and P2RY12. The most robust morphological difference between VPA marmosets and UE marmosets throughout the life span evaluated were the microglia processes in VPA marmosets being frequently segmented by thin and faintly Iba1-positive structures. The segmentation of microglial processes was only rarely observed in UE marmosets. This feature of segmentation of microglial processes in VPA marmosets can also be observed in images from previous studies on ASD conducted in humans and animal models. Apoptotic cells have been shown to have segmented processes. Therefore, our results might suggest that microglia in patients and animals with ASD symptoms could frequently be in the apoptotic phase with high turnover rates of microglia found in some pathological conditions.

5.
Neuroimage ; 195: 243-251, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30953832

RESUMO

In autism spectrum disorder (ASD), disrupted functional and structural connectivity in the social brain has been suggested as the core biological mechanism underlying the social recognition deficits of this neurodevelopmental disorder. In this study, we aimed to identify genetic and neurostructural abnormalities at birth in a non-human primate model of ASD, the common marmoset with maternal exposure to valproic acid (VPA), which has been reported to display social recognition deficit in adulthood. Using a comprehensive gene expression analysis, we found that 20 genes were significantly downregulated in VPA-exposed neonates. Of these, Frizzled3 (FZD3) and PIK3CA were identified in an axon guidance signaling pathway. FZD3 is essential for the normal development of the anterior commissure (AC) and corpus callosum (CC); hence, we performed diffusion tensor magnetic resonance imaging with a 7-Tesla scanner to measure the midsagittal sizes of these structures. We found that the AC size in VPA-exposed neonates was significantly smaller than that in age-matched controls, while the CC size did not differ. These results suggest that downregulation of the genes related to axon guidance and decreased AC size in neonatal primates may be linked to social brain dysfunctions that can happen later in life.


Assuntos
Comissura Anterior/patologia , Transtorno do Espectro Autista/patologia , Orientação de Axônios/fisiologia , Animais , Animais Recém-Nascidos , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/metabolismo , Orientação de Axônios/efeitos dos fármacos , Callithrix , Classe I de Fosfatidilinositol 3-Quinases/biossíntese , Modelos Animais de Doenças , Receptores Frizzled/biossíntese , GABAérgicos/toxicidade , Transcriptoma/efeitos dos fármacos , Ácido Valproico/toxicidade
6.
Behav Brain Res ; 343: 36-40, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29374522

RESUMO

Humans and various nonhuman primates respond negatively to inequity not in their favor (i.e., inequity aversion), when inequity between two individuals is introduced. Common marmosets, a highly prosocial species, further discriminated between human actors who reciprocated in social exchanges, and those who did not. Conversely, marmoset models of autism, induced via prenatal exposure to valproic acid (VPA marmosets), did not discriminate. Interestingly, previous studies of inequity aversion in marmosets have produced negative results, or were limited to males. Recent studies suggest that inequity aversion is highly influenced by the tasks employed. Here we show inequity aversion in both male and female marmosets using a novel task which required a relatively long duration of response. Marmosets were required to hold a spoon for 2 s to receive a reward. Marmosets successfully performed the task when they observed an unfamiliar conspecific partner obtaining the same reward (equity test). However, when they witnessed the partner receiving a more attractive reward for equal effort (inequity test), unexposed marmosets, which were not exposed to either valproic acid or saline during the fetal period refused to respond. This inequity aversion was not observed in unexposed marmosets when the partner was absent. In contrast, marmosets with fetal exposure to valproic acid (VPA marmosets) successfully executed the task irrespective of their partners' reward conditions. As prenatal exposure to valproic acid is a well-known procedure to induce autism spectrum disorder (ASD)-like behaviors in rodents, we propose that VPA marmosets failed to show inequity aversion due to weak social motivation or interest towards others.


Assuntos
Transtorno do Espectro Autista/psicologia , Callithrix/psicologia , Comportamento Social , Percepção Social , Animais , Modelos Animais de Doenças , Comportamento Alimentar/psicologia , Feminino , Masculino , Testes Psicológicos , Ácido Valproico
7.
Behav Brain Res ; 292: 323-6, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26133500

RESUMO

Autism is characterized by deficits in social interaction and social recognition. Although animal models of autism have demonstrated that model animals engage less in social interaction or attend less to conspecifics than control animals, no animal model has yet replicated the deficit in recognition of complex social interaction as is seen in humans with autism. Here, we show that marmosets discriminated between human actors who reciprocated in social exchanges and those who did not; however, marmosets with foetal exposure to valproic acid (VPA marmosets) did not. In the reciprocal condition, two actors exchanged food equally, while in the non-reciprocal condition, one actor (non-reciprocator) ended up with all food and the other actor with none. After observing these exchanges, the control marmosets avoided receiving food from the non-reciprocator in the non-reciprocal condition. However, the VPA marmosets did not show differential preferences in either condition, suggesting that the VPA marmosets did not discriminate between reciprocal and non-reciprocal interactions. These results indicate that normal marmosets can evaluate social interaction between third-parties, while the VPA marmosets are unable to recognize whether an individual is being reciprocal or not. This test battery can serve as a useful tool to qualify primate models of autism.


Assuntos
Transtorno Autístico/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Comportamento Social , Ácido Valproico/farmacologia , Animais , Callithrix , Modelos Animais de Doenças , Feminino , Humanos , Relações Interpessoais , Masculino , Gravidez
8.
J Med Virol ; 86(12): 2146-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24760654

RESUMO

Although human coronavirus (HCoV)-NL63 was once considered a possible causative agent of Kawasaki disease based on RT-PCR analyses, subsequent studies could not confirm the result. In this study, this possibility was explored using serological tests. To evaluate the role of HCoV infection in patients with Kawasaki disease, immunofluorescence assays and virus neutralizing tests were performed. Paired serum samples were obtained from patients with Kawasaki disease who had not been treated with γ-globulin. HCoV-NL63 and two antigenically different isolates of HCoV-229E (ATCC-VR740 and a new isolate, Sendai-H) were examined as controls. Immunofluorescence assays detected no difference in HCoV-NL63 antibody positivity between the patients with Kawasaki disease and controls, whereas the rate of HCoV-229E antibody positivity was higher in the patients with Kawasaki disease than that in controls. The neutralizing tests revealed no difference in seropositivity between the acute and recovery phases of patients with Kawasaki disease for the two HCoV-229Es. However, the Kawasaki disease specimens obtained from patients in recovery phase displayed significantly higher positivity for Sendai-H, but not for ATCC-VR740, as compared to the controls. The serological test supported no involvement of HCoV-NL63 but suggested the possible involvement of HCoV-229E in the development of Kawasaki disease.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Coronaviridae/complicações , Infecções por Coronaviridae/virologia , Coronavirus Humano 229E/imunologia , Coronavirus Humano NL63/imunologia , Síndrome de Linfonodos Mucocutâneos/etiologia , Síndrome de Linfonodos Mucocutâneos/virologia , Criança , Pré-Escolar , Feminino , Imunofluorescência , Humanos , Lactente , Masculino , Testes de Neutralização
9.
Biochem Biophys Res Commun ; 444(3): 302-6, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24485715

RESUMO

The synapse number and the related dendritic spine number in the cerebral cortex of primates shows a rapid increase after birth. Depending on the brain region and species, the number of synapses reaches a peak before adulthood, and pruning takes place after this peak (overshoot-type synaptic formation). Human mental disorders, such as autism and schizophrenia, are hypothesized to be a result of either too weak or excessive pruning after the peak is reached. Thus, it is important to study the molecular mechanisms underlying overshoot-type synaptic formation, particularly the pruning phase. To examine the molecular mechanisms, we used common marmosets (Callithrix jacchus). Microarray analysis of the marmoset cortex was performed in the ventrolateral prefrontal, inferior temporal, and primary visual cortices, where changes in the number of dendritic spines have been observed. The spine number of all the brain regions above showed a peak at 3 months (3 M) after birth and gradually decreased (e.g., at 6 M and in adults). In this study, we focused on genes that showed differential expression between ages of 3 M and 6 M and on the differences whose fold change (FC) was greater than 1.2. The selected genes were subjected to canonical pathway analysis, and in this study, we describe axon guidance signaling, which had high plausibility. The results showed a large number of genes belonging to subsystems within the axon guidance signaling pathway, macrophages/immune system, glutamate system, and others. We divided the data and discussion of these results into 2 papers, and this is the first paper, which deals with the axon guidance signaling and macrophage/immune system. Other systems will be described in the next paper. Many components of subsystems within the axon guidance signaling underwent changes in gene expression from 3 M to 6 M so that the synapse/dendritic spine number would decrease at 6 M. Thus, axon guidance signaling probably contributes to the decrease in synapse/dendritic spine number at 6 M, the phenomenon that fits the overshoot-type synaptic formation in primates. Microglial activity (evaluated by quantifying AIF1 expression) and gene expression of molecules that modulate microglia, decreased at 6 M, just like the synapse/dendritic spine number. Thus, although microglial activity is believed to be related to phagocytosis of synapses/dendritic spines, microglial activity alone cannot explain how pruning was accelerated in the pruning phase. On the other hand, expression of molecules that tag synapses/dendritic spines as a target of phagocytosis by microglia (e.g., complement components) increased at 6 M, suggesting that these tagging proteins may be involved in the acceleration of pruning during the pruning phase.


Assuntos
Axônios , Callithrix/genética , Córtex Cerebral/metabolismo , Espinhas Dendríticas , Perfilação da Expressão Gênica , Maturidade Sexual , Transdução de Sinais , Sinapses , Animais , Callithrix/crescimento & desenvolvimento , Callithrix/imunologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/imunologia , DNA Complementar/genética , Feminino , Masculino , Análise de Sequência com Séries de Oligonucleotídeos
10.
Biochem Biophys Res Commun ; 444(3): 307-10, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24440696

RESUMO

This is the second report of a series paper, which reports molecular mechanisms underlying the occurrence of pruning spine phase after rapid spinogenesis phase in neonates and young infant in the primate brain. We performed microarray analysis between the peak of spine numbers [postnatal 3 months (M)] and spine pruning (postnatal 6M) in prefrontal, inferior temporal, and primary visual cortices of the common marmoset (Callithrix jacchus). The pruning phase is not clearly defined in rodents but is in primates including the marmoset. The differentially expressed genes between 3M and 6M in all three cortical areas were selected by two-way analysis of variance. The list of selected genes was analyzed by canonical pathway analysis using "Ingenuity Pathway Analysis of complex omics data" (IPA; Ingenuity Systems, Qiagen, Hilden, Germany). In this report, we discuss these lists of genes for the glutamate receptor system, G-protein-coupled neuromodulator system, protector of normal tissue and mitochondria, and reelin. (1) Glutamate is a common neurotransmitter. Its receptors AMPA1, GRIK1, and their scaffold protein DLG4 decreased as spine numbers decreased. Instead, GRIN3 (NMDA receptor) increased, suggesting that strong NMDA excitatory currents may be required for a single neuron to receive sufficient net synaptic activity in order to compensate for the decrease in synapse. (2) Most of the G protein-coupled receptor genes (e.g., ADRA1D, HTR2A, HTR4, and DRD1) in the selected list were upregulated at 6M. The downstream gene ROCK2 in these receptor systems plays a role of decreasing synapses, and ROCK2 decreased at 6M. (3) Synaptic phagosytosis by microglia with complement and other cytokines could cause damage to normal tissue and mitochondria. SOD1, XIAP, CD46, and CD55, which play protective roles in normal tissue and mitochondria, showed higher expression at 6M than at 3M, suggesting that normal brain tissue is more protected at 6M. (4) Reelin has an important role in cortical layer formation. In addition, RELN and three different pathways of reelin were expressed at 6M, suggesting that new synapse formation decreased at that age. Moreover, if new synapses were formed, their positions were free and probably dependent on activity.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Córtex Cerebral/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores/fisiologia , Receptores de Glutamato/genética , Serina Endopeptidases/metabolismo , Sinapses , Animais , Animais Recém-Nascidos , Callithrix , Córtex Cerebral/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Reelina , Maturidade Sexual
11.
J Virol ; 84(13): 6654-66, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20410265

RESUMO

Although most inbred mouse strains are highly susceptible to mouse hepatitis virus (MHV) infection, the inbred SJL line of mice is highly resistant to its infection. The principal receptor for MHV is murine CEACAM1 (mCEACAM1). Susceptible strains of mice are homozygous for the 1a allele of mCeacam1, while SJL mice are homozygous for the 1b allele. mCEACAM1a (1a) has a 10- to 100-fold-higher receptor activity than does mCEACAM1b (1b). To explore the hypothesis that MHV susceptibility is due to the different MHV receptor activities of 1a and 1b, we established a chimeric C57BL/6 mouse (cB61ba) in which a part of the N-terminal immunoglobulin (Ig)-like domain of the mCeacam1a (1a) gene, which is responsible for MHV receptor function, is replaced by the corresponding region of mCeacam1b (1b). We compared the MHV susceptibility of these chimeric mice to that of SJL and B6 mice. B6 mice that are homozygous for 1a are highly susceptible to MHV-A59 infection, with a 50% lethal dose (LD(50)) of 10(2.5) PFU, while chimeric cB61ba mice and SJL mice homozygous for 1ba and 1b, respectively, survived following inoculation with 10(5) PFU. Unexpectedly, cB61ba mice were more resistant to MHV-A59 infection than SJL mice as measured by virus replication in target organs, including liver and brain. No infectious virus or viral RNA was detected in the organs of cB61ba mice, while viral RNA and infectious virus were detected in target organs of SJL mice. Furthermore, SJL mice produced antiviral antibodies after MHV-A59 inoculation with 10(5) PFU, but cB61ba mice did not. Thus, cB61ba mice are apparently completely resistant to MHV-A59 infection, while SJL mice permit low levels of MHV-A59 virus replication during self-limited, asymptomatic infection. When expressed on cultured BHK cells, the mCEACAM1b and mCEACAM1ba proteins had similar levels of MHV-A59 receptor activity. These results strongly support the hypothesis that although alleles of mCEACAM1 are the principal determinants of mouse susceptibility to MHV-A59, other as-yet-unidentified murine genes may also play a role in susceptibility to MHV.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Glicoproteínas/metabolismo , Imunidade Inata , Vírus da Hepatite Murina/patogenicidade , Internalização do Vírus , Alelos , Animais , Antígeno Carcinoembrionário/genética , Moléculas de Adesão Celular , Glicoproteínas/genética , Homozigoto , Dose Letal Mediana , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sobrevida
12.
Neurosci Res ; 66(1): 62-85, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19808062

RESUMO

To facilitate common marmoset brain research, we produced a DNA microarray with 7557 probe sets derived from the common marmoset brain. Gene expression profiles in the frontal lobe, hippocampus, cerebellum and amygdaloid nucleus were then analyzed and the top 100 probe sets expressed in each structure were compared. The three lists for the frontal lobe, hippocampus and amygdaloid nucleus were very similar but the probe sets for the cerebellum demonstrated specific differences. Some of the genes specifically expressed in cerebellum were analyzed by real-time quantitative PCR to verify the DNA microarray results. Of examined genes, 5 showed extremely strong expression in cerebellum in comparison with the other structures. The results of real-time quantitative PCR were well consistent with the microarray findings, validating our newly developed DNA microarray as a useful tool for brain research with the common marmoset.


Assuntos
Encéfalo/metabolismo , Callithrix/anatomia & histologia , Perfilação da Expressão Gênica/métodos , Expressão Gênica/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Encéfalo/anatomia & histologia , Callithrix/metabolismo , Masculino , Reprodutibilidade dos Testes
13.
Microbiol Immunol ; 52(2): 118-27, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18380809

RESUMO

SARS-CoV grows in a variety of tissues that express its receptor, although the mechanism for high replication in the lungs and severe respiratory illness is not well understood. We recently showed that elastase enhances SARS-CoV infection in cultured cells, which suggests that SARS development may be due to elastase-mediated, enhanced SARS-CoV infection in the lungs. To explore this possibility, we examined whether co-infection of mice with SARS-CoV and Pp, a low-pathogenic bacterium which elicits elastase production in the lungs, induces exacerbation of pneumonia. Mice co-infected with SARS-CoV and Pp developed severe respiratory disease with extensive weight loss, resulting in a 33~90% mortality rate. Mice with exacerbated pneumonia showed enhanced virus infection in the lungs and histopathological lesions similar to those found in human SARS cases. Intranasal administration of LPS, another elastase inducer, showed an effect similar to that of Pp infection. Thus, this study shows that exacerbated pneumonia in mice results from co-infection with SARS-CoV and a respiratory bacterium that induces elastase production in the lungs, suggesting a possible role for elastase in the exacerbation of pneumonia.


Assuntos
Elastase Pancreática/biossíntese , Pasteurella pneumotropica/enzimologia , Pneumonia Viral/patologia , Pneumonia Viral/fisiopatologia , Síndrome Respiratória Aguda Grave/patologia , Síndrome Respiratória Aguda Grave/fisiopatologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/crescimento & desenvolvimento , Animais , Peso Corporal , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pasteurella pneumotropica/crescimento & desenvolvimento , Índice de Gravidade de Doença , Análise de Sobrevida
15.
J Virol ; 79(10): 6102-10, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15857995

RESUMO

Although neurovirulent mouse hepatitis virus (MHV) strain JHMV multiplies in a variety of brain cells, expression of its receptor carcinoembryonic antigen cell adhesion molecule 1 (CEACAM 1) (MHVR) is restricted only in microglia. The present study was undertaken to clarify the mechanism of an extensive JHMV infection in the brain by using neural cells isolated from mouse brain. In contrast to wild-type (wt) JHMV, a soluble-receptor-resistant mutant (srr7) infects and spreads solely in an MHVR-dependent fashion (F. Taguchi and S. Matsuyama, J. Virol. 76:950-958, 2002). In mixed neural cell cultures, srr7 infected a limited number of cells and infection did not spread, although wt JHMV induced syncytia in most of the cells. srr7-infected cells were positive for GS-lectin, a microglia marker. Fluorescence-activated cell sorter analysis showed that about 80% of the brain cells stained with anti-MHVR antibody (CC1) were also positive for GS-lectin. Pretreatment of those cells with CC1 prevented virus attachment to the cell surface and also blocked virus infection. These results show that microglia express functional MHVR that mediates JHMV infection. As expected, in microglial cell-enriched cultures, both srr7and wt JHMV produced syncytia in a majority of cells. Treatment with CC1 of mixed neural cell cultures and microglia cultures previously infected with wt virus failed to block the spread of infection, indicating that wt infection spreads in an MHVR-independent fashion. Thus, the present study indicates that microglial cells are the major population of the initial target for MHV infection and that the wt spreads from initially infected microglia to a variety of cells in an MHVR-independent fashion.


Assuntos
Infecções por Coronavirus/virologia , Vírus da Hepatite Murina/fisiologia , Receptores Virais/metabolismo , Animais , Astrócitos , Técnicas de Cocultura , Infecções por Coronavirus/metabolismo , Anticorpos Anti-Hepatite/imunologia , Camundongos , Microglia/metabolismo , Microglia/virologia , Vírus da Hepatite Murina/patogenicidade , Mutação , Neurônios , Oligodendroglia , Virulência , Replicação Viral
16.
J Virol ; 78(1): 216-23, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14671103

RESUMO

The mouse hepatitis virus (MHV) receptor (MHVR), CEACAM1, has two different functions for MHV entry into cells: binding to MHV spike protein (S protein) and activation of the S protein to execute virus-cell membrane fusion, the latter of which is accompanied by conformational changes of the S protein. The MHVR comprising the N-terminal and fourth domains [R1(1,4)] displays these two activities, and the N domain is thought to be critical for binding to MHV. In this study, we have addressed whether or not the N domain alone is sufficient for these activities. We examined three types of soluble form MHVR (soMHVR), one consisting of the N domain alone [soR1(1)], one with the N and second domains [soR1(1,2)], and one [soR1(1,4)] expressed by recombinant baculoviruses. We assessed the abilities of these three types of soMHVR to bind to MHV, activate fusogenicity, and induce conformational changes of the S protein. All three types of soMHVR similarly bound to MHV, as examined by a solid-phase binding assay and neutralized MHV infectivity. They also activated S protein fusogenicity and induced its conformational changes with similar levels of efficiency. However, R1(1) expressed on the BHK cell surface failed to serve as a receptor in spite of a sufficient level of expression. The inability of expressed R1(1) to work as a receptor was due to the inaccessibility of virions to R1(1); however, these were accessible using the MHVR-specific monoclonal antibody CC1. These results collectively indicated that the N domain retains all biological activities necessary for receptor function.


Assuntos
Antígenos CD/química , Antígenos de Diferenciação/química , Fusão de Membrana , Glicoproteínas de Membrana/metabolismo , Vírus da Hepatite Murina/patogenicidade , Receptores Virais/química , Proteínas do Envelope Viral/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação/metabolismo , Antígeno Carcinoembrionário , Moléculas de Adesão Celular , Linhagem Celular , Membrana Celular/metabolismo , Cricetinae , Citometria de Fluxo , Glicoproteínas de Membrana/química , Vírus da Hepatite Murina/metabolismo , Vírus da Hepatite Murina/fisiologia , Testes de Neutralização , Conformação Proteica , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus , Relação Estrutura-Atividade , Proteínas do Envelope Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA