RESUMO
Saccharomyces cerevisiae is one of the most important microorganisms for the food industry, including Japanese sake, beer, wine, bread, and other products. For sake making, Kyokai sake yeast strains are considered one of the best sake yeast strains because these strains possess fermentation properties that are suitable for the quality of sake required. In recent years, the momentum for the development of unique sake, which is distinct from conventional sake, has grown, and there is now a demand to develop unique sake yeasts that have different sake making properties than Kyokai sake yeast strains. In this minireview, we focus on "wild yeasts," which inhabit natural environments, and introduce basic research on the wild yeasts for sake making, such as their genetic and sake fermentation aspects. Finally, we also discuss the molecular breeding of wild yeast strains for sake fermentation and the possibility for sake making using wild yeasts.
Assuntos
Proteínas de Saccharomyces cerevisiae , Vinho , Saccharomyces cerevisiae/metabolismo , Bebidas Alcoólicas/análise , Proteínas de Saccharomyces cerevisiae/genética , Fermentação , Leveduras/genética , Leveduras/metabolismoRESUMO
We present the complete genome sequence of Methylorubrum extorquens strain GM97, which formed large colonies on a 1/100 nutrient plate with samarium (Sm3+). The genome for strain GM97 was estimated to be 7,608,996 bp, which suggests that the strain is closely related to Methylorubrum extorquens strains.
RESUMO
BACKGROUND: Duchenne muscular dystrophy (DMD) is caused by DMD gene mutations, resulting in absence of functional dystrophin protein. Viltolarsen, an exon 53 skipping therapy, significantly increased dystrophin levels in patients with DMD. Presented here are completed study results ofâ>â4 years of functional outcomes in viltolarsen-treated patients compared to a historical control group (Cooperative International Neuromuscular Research Group Duchenne Natural History Study [CINRG DNHS]). OBJECTIVE: To evaluate the efficacy and safety of viltolarsen for an additional 192 weeks in boys with DMD. METHODS: This phase 2, open-label, 192-week long-term extension (LTE) study (NCT03167255) evaluated the efficacy and safety of viltolarsen in participants aged 4 toâ<â10 years at baseline with DMD amenable to exon 53 skipping. All 16 participants from the initial 24-week study enrolled into this LTE. Timed function tests were compared to the CINRG DNHS group. All participants received glucocorticoid treatment. The primary efficacy outcome was time to stand from supine (TTSTAND). Secondary efficacy outcomes included additional timed function tests. Safety was continuously assessed. RESULTS: For the primary efficacy outcome (TTSTAND), viltolarsen-treated patients showed stabilization of motor function over the first two years and significant slowing of disease progression over the following two years compared with the CINRG DNHS control group which declined. Viltolarsen was well tolerated, with most reported treatment-emergent adverse events being mild or moderate. No participants discontinued drug during the study. CONCLUSIONS: Based on the results of this 4-year LTE, viltolarsen can be an important treatment strategy for DMD patients amenable to exon 53 skipping.
Assuntos
Distrofia Muscular de Duchenne , Masculino , Humanos , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Oligonucleotídeos/efeitos adversos , Glucocorticoides/uso terapêuticoRESUMO
The Kimoto-style fermentation starter is a traditional preparation method of sake brewing. In this process, specific microbial transition patterns have been observed within nitrate-reducing bacteria and lactic acid bacteria during the production process of the fermentation starter. We have characterized phylogenetic compositions and diversity of the bacterial community in a sake brewery performing the Kimoto-style fermentation. Comparing the time-series changes with other sake breweries previously reported, we found a novel type of Kimoto-style fermentation in which the microbial transition differed significantly from other breweries during the fermentation step. Specifically, the lactic acid bacteria, Leuconostoc spp. was a predominant species in the late stage in the preparation process of fermentation starter, on the other hand, Lactobacillus spp., which plays a pivotal role in other breweries, was not detected in this analysis. The discovery of this new variation of microbiome transition in Kimoto-style fermentation has further deepened our understanding of the diversity of sake brewing.
Assuntos
Lactobacillales , Proteínas de Saccharomyces cerevisiae , Humanos , Bebidas Alcoólicas/análise , Bactérias , Fermentação , Microbiologia de Alimentos , Lactobacillus/genética , Leuconostoc/genética , Filogenia , Saccharomyces cerevisiaeRESUMO
Introduction: In Kimoto-style fermentation, a fermentation starter is produced before the primary brewing process to stabilize fermentation. Nitrate-reducing bacteria, mainly derived from brewing water, produce nitrite, and lactic acid bacteria such as Leuconostoc can proliferate because of their tolerance toward low temperature and their low nutritional requirements. Later, Lactobacillus becomes the dominant genus, leading to weakly acidic conditions that contribute to control yeasts and undesired bacterial contaminants. However, the sources of these microorganisms that play a pivotal role in Sake brewing have not yet been revealed. Thus, comprehensive elucidation of the microbiome is necessary. Methods: In this study, we performed 16S rRNA amplicon sequencing analysis after sampling from floor, equipment surfaces, and raw materials for making fermentation starters, including koji, and water in Tsuchida Sake brewery, Gunma, Japan. Results: Amplicon sequence variants (ASVs) between the external environments and the fermentation starter were compared, and it was verified that the microorganisms in the external environments, such as built environments, equipment surfaces, and raw materials in the sake brewery, were introduced into the fermentation starter. Furthermore, various adventitious microbes present in the fermentation starter of early days and from the external environments were detected in a nonnegligible proportion in the starter, which may impact the taste and flavor. Discussion: These findings illuminate the uncharacterized microbial dark matter of sake brewing, the sources of microbes in Kimoto-style fermentation.
RESUMO
This study aimed to investigate the effects of interleukin-25, which belongs to the interleukin-17 family, on short-term high-fructose diet-induced hepatic triacylglycerol accumulation. Rats were fed a high-starch (control) or high-fructose diet for 7 d, with or without intraperitoneal administration of recombinant interleukin-25 from days 3-7. Treatment with interleukin-25 significantly reduced the mRNA levels and activity of fatty acid synthesis enzymes and caused a nominal reduction in hepatic triacylglycerol levels in rats fed a high-fructose diet but not in those fed a control diet. Interleukin-25 treatment did not affect the mRNA levels of ß-oxidation enzymes in either the control or fructose-fed rats. These results suggest that treatment with interleukin-25 suppresses short-term high-fructose diet-induced fatty acid synthesis and leads to the alleviation of triacylglycerol accumulation in the liver.
Assuntos
Frutose , Interleucina-17 , Fígado , Animais , Ratos , Dieta , Ácidos Graxos/metabolismo , Frutose/farmacologia , Expressão Gênica , Interleucina-17/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ratos Wistar , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismoRESUMO
In this study, we aimed to elucidate the bacterial biota of ayu-nazushi, which is a fermented salted fish dish made in Gifu City, Japan. In traditional Gifu ayu-nazushi, Lactobacillaceae (mainly Latilactobacillus sakei) was the most dominant family, followed by Enterobacteriaceae. Moreover, fermentation bacteria in ayu-nazushi came from the salted fish, and the bacterial biota in the ayu-nazushi transferred as the fermentation process progressed. In the early stage of fermentation, Leuconostoc mesenteroides was main species, and then in the late stage, L. sakei became predominant. We also observed that when non-salted fish was used for the manufacture of ayu-nazushi, Aeromonas veronii, which is a pathogen for humans, was observed in significant quantities. These results indicate that L. sakei and L. mesenteroides were influential lactic acid bacteria for the fermentation of Gifu ayu-narezushi, and that salting treatment of the fish is an indispensable step in the manufacturing process in order to suppress the growth of Aeromonas species.
Assuntos
Osmeriformes , Animais , Bactérias , Enterobacteriaceae , Fermentação , Humanos , JapãoRESUMO
We investigated the effects of dietary supplementation with sodium butyrate (NaB) on the lipid levels, gene expression, and proteins related to lipid metabolism in nonalcoholic fatty liver disease (NAFLD) rat models fed a high-sucrose diet for 3 weeks. Supplementation with 1% and 3% NaB reduced high-sucrose-induced hepatic triacylglycerol levels and expression of genes and proteins related to fatty acid synthesis, such as fatty acid synthase and malic enzyme, in a dose-dependent manner. NaB supplementation did not affect hepatic cholesterol levels or expression of genes related to ß-oxidation. NaB may prevent high-sucrose-induced NAFLD by repressing the fatty acid synthesis pathway.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Ácido Butírico/farmacologia , Dieta , Suplementos Nutricionais , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Sacarose/efeitos adversos , Triglicerídeos/metabolismoRESUMO
Efficient bioconversion of methanol, which can be generated from greenhouse gases, into valuable resources contributes to achieving climate goals and developing a sustainable economy. The methylotrophic yeast Ogataea methanolica is considered to be a suitable host for efficient methanol bioconversion because it has outstanding characteristics for the better adaptive potential to a high methanol environment (i.e., greater than 5%). This capacity represents a huge potential to construct an innovative carbon-neutral production system that converts methanol into value-added chemicals under the control of strong methanol-induced promoters. In this review, we discuss what is known about the regulation of methanol metabolism and adaptation mechanisms for 5% methanol conditions in O. methanolica in detail. We also discuss about the potential to breed "super methylotrophic yeast," which has potent growth characteristics under high methanol conditions.
Assuntos
Metanol , Saccharomycetales , Regulação Fúngica da Expressão Gênica , Metanol/metabolismo , Pichia/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Leveduras/metabolismoRESUMO
We present the draft genome sequence of Bradyrhizobium sp. strain Ce-3, which produced exopolysaccharide (EPS) and oxidized methanol in the presence of Ce3+. The genome for strain Ce-3 was estimated at 7,608,996 bp and showed that the strain is closely related to Bradyrhizobium erythrophlei MT12 and Bradyrhizobium sp. strain C9.
RESUMO
BACKGROUND: Duchenne muscular dystrophy (DMD) is a rare, genetic disease caused by mutations in the DMD gene resulting in an absence of functional dystrophin protein. Viltolarsen, an exon 53 skipping therapy, has been shown to increase endogenous dystrophin levels. Herein, long-term (>2 years) functional outcomes in viltolarsen treated patients were compared to a matched historical control group. OBJECTIVE: To evaluate long-term efficacy and safety of the anti-sense oligonucleotide viltolarsen in the treatment of patients with DMD amenable to exon 53 skipping therapy. METHODS: This trial (NCT03167255) is the extension of a previously published 24-week trial in North America (NCT02740972) that examined dystrophin levels, timed function tests compared to a matched historical control group (Cooperative International Neuromuscular Research Group Duchenne Natural History Study, CINRG DNHS), and safety in boys 4 toâ<â10 years (Nâ=â16) with DMD amenable to exon 53 skipping who were treated with viltolarsen. Both groups were treated with glucocorticoids. All 16 participants elected to enroll in this long-term trial (up to 192 weeks) to continue evaluation of motor function and safety. RESULTS: Time to stand from supine and time to run/walk 10 meters showed stabilization from baseline through week 109 for viltolarsen-treated participants whereas the historical control group showed decline (statistically significant differences for multiple timepoints). Safety was similar to that observed in the previous 24-week trial, which was predominantly mild. There have been no treatment-related serious adverse events and no discontinuations. CONCLUSIONS: Based on these results at over 2 years, viltolarsen can be a new treatment option for patients with DMD amenable to exon 53 skipping.
Assuntos
Distrofina , Distrofia Muscular de Duchenne , Distrofina/genética , Distrofina/metabolismo , Humanos , Masculino , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Oligonucleotídeos/efeitos adversos , Oligonucleotídeos AntissensoRESUMO
The transition of the bacterial biota of Kishu saba-narezushi (mackerel-narezushi) in the Hidaka region of Wakayama prefecture, Japan, was analyzed using amplicon sequencing based on the V3-V4 variable region of the 16S rRNA gene. In the non-fermented sample (0 day), the major genus with the highest abundance ratio was Staphylococcus. In the early stage (fermentation for 2 days), however, the genus Lactococcus became a dominant species, and in the later stage (fermentation for 5 days), the abundance ratio of the genus Lactobacillus increased significantly. Lactococcus lactis strains isolated from the narezushi samples had the ability to suppress the growth of not only Staphylococcus genera but also Lactobacillus. Moreover, the isolates produced a bacteriocin, which was identified as nisin Z. On the basis of these results, it is concluded that L. lactis plays an important role in preparing the fermentation conditions of Kishu saba-narezushi in the early stage by suppressing unwanted microorganisms using lactic acid and nisin Z.
Assuntos
Lactococcus lactis , Nisina , Perciformes , Animais , Bactérias/metabolismo , Biota , Fermentação , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Nisina/metabolismo , Perciformes/metabolismo , RNA Ribossômico 16S/genéticaRESUMO
In this study, we analysed the intracellular fatty acid profiles of Komagataella phaffii during methylotrophic growth. K. phaffii grown on methanol had significantly lower total fatty acid contents in the cells compared with glucose-grown cells. C18 and C16 fatty acids were the predominant fatty acids in K. phaffii, although the contents of odd-chain fatty acids such as C17 fatty acids were also relatively high. Moreover, the intracellular fatty acid composition of K. phaffii changed in response to not only carbon sources but also methanol concentrations: C17 fatty acids and C18:2 content increased significantly as methanol concentration increased, whereas C18:1 and C18:3 contents were significantly lower in methanol-grown cells. The intracellular content of unidentified compounds (Cn H2n O4 ), on the other hand, was significantly greater in cells grown on methanol. As the intracellular contents of these Cn H2n O4 compounds were significantly higher in a gene-disrupted strain for glutathione peroxidase (gpx1Δ) than in the wild-type strain, we presume that the Cn H2n O4 compounds are fatty acid peroxides. These results indicate that K. phaffii can coordinate intracellular fatty acid composition during methylotrophic growth in order to adapt to high-methanol conditions and that certain fatty acid species such as C17:0, C17:1, C17:2 and C18:2 may be related to the physiological functions by which K. phaffii adapts to high-methanol conditions.
Assuntos
Metanol , Saccharomycetales , Ácidos Graxos , LevedurasRESUMO
Since methylotrophic yeasts such as Ogataea methanolica can use methanol as a sole carbon feedstock, they could be applied to produce valuable products from methanol, a next-generation energy source synthesized from natural gases, using genetic engineering tools. In this study, metabolite profiling of O. methanolica was conducted under glucose (Glc) and low and high methanol (L- and H-MeOH) conditions to show the adaptation mechanism to a H-MeOH environment. The yeast strain responded not only to the presence of methanol but also to its concentration based on the growth condition. Under H-MeOH conditions, O. methanolica downregulated the methanol utilization, glycolytic pathway and alcohol oxidase (AOD) isozymes and dihydroxyacetone synthase (DAS) expression compared with L-MeOH-grown cells. However, levels of energy carriers, such as ATP, were maintained to support cell survival. In H-MeOH-grown cells, reactive oxygen species (ROS) levels were significantly elevated. Along with increasing ROS levels, ROS scavenging system expression was significantly increased in H-MeOH-grown cells. Thus, we concluded that formaldehyde and H2 O2 , which are products of methanol oxidation by AOD isozymes in the peroxisome, are overproduced in H-MeOH-grown cells, and excessive ROS derived from these cells is generated in the cytosol, resulting in upregulation of the antioxidant system and downregulation of the methanol-utilizing pathway to suppress overproduction of toxic intermediates.
Assuntos
Metanol , Saccharomycetales , Regulação Fúngica da Expressão Gênica , PichiaRESUMO
We examined effects of a major lipotrope, myo-inositol, on the expression of primary glycolytic (glucokinase and phosphofructokinase) and fructolytic enzyme (ketohexokinase [KHK] and aldolase B) genes in the livers of rats fed a control diet, high-sucrose diet, or high-sucrose diet supplemented with 0.5% myo-inositol for 14 d. Supplementation with myo-inositol decreased the hepatic expression of fructolytic enzyme genes, but not that of glycolytic enzyme genes, and the levels of triglycerides, fatty acid synthase, and KHK proteins in high-sucrose diet-induced fatty liver. The study results suggest that myo-inositol represses primary fructlysis, but not glycolysis, in high-sucrose diet-induced fatty liver.
Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Sacarose Alimentar/efeitos adversos , Suplementos Nutricionais , Frutoquinases/genética , Frutoquinases/metabolismo , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Expressão Gênica/efeitos dos fármacos , Glucoquinase/genética , Glucoquinase/metabolismo , Inositol/administração & dosagem , Inositol/farmacologia , Fígado/enzimologia , Fosfofrutoquinases/genética , Fosfofrutoquinases/metabolismo , Animais , Fígado/metabolismo , Masculino , Ratos WistarRESUMO
Stearoyl-CoA desaturase-1 (SCD1) is a key enzyme in the biosynthesis of monounsaturated fatty acids, and the expression of the Scd1 gene is induced by the intake of the lipogenic sugar fructose. We examined the effects of a high-fructose diet on hepatic acetylation of histones H3 and H4 and the binding of carbohydrate response element-binding protein (ChREBP) on the Scd1 gene promoter in rats. Rats were fed a control diet or a high-fructose diet for 10 days. The intake of a high-fructose diet significantly increased histone H3 and H4 acetylation and ChREBP binding to the Scd1 gene promoter as well as the amount of triglyceride and the expression of the Scd1 gene. These results suggest that short-term intake of high fructose upregulates expression of Scd1 by enhancing acetylation of histones H3 and H4 and binding of ChREBP at the Scd1 promoter.
Assuntos
Ração Animal , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/biossíntese , Frutose/química , Histonas/metabolismo , Estearoil-CoA Dessaturase/biossíntese , Estearoil-CoA Dessaturase/genética , Acetilação , Animais , Regulação da Expressão Gênica , Fígado/metabolismo , Masculino , Regiões Promotoras Genéticas , Ligação Proteica , Processamento de Proteína Pós-Traducional , Ratos , Ratos Wistar , Triglicerídeos/metabolismo , Regulação para CimaRESUMO
The lanthanide elements (Lns) affect the physiology and growth of certain microorganisms known as "Ln-responsive microorganisms." Among them, in 2011, it was first reported that strains of Methylobacterium exhibited high methanol dehydrogenase (MDH) activity when grown in the presence of Lns; the purified Ln-inducible MDH was identified as XoxF-type MDH, whose catalytic function had previously been unknown. XoxF was the first enzyme to be identified as Ln-dependent, and its function in methylotrophy is more fundamental and important than that of the corresponding Ca2+-dependent MDH MxaFI. XoxF is encoded in the genomes of methylotrophic as well as non-methylotrophic bacteria. Thus, Lns are among the most fascinating and important growth factors for bacteria that potentially utilize methanol. Bacteria that require Lns for methanol growth are called "Ln-dependent methylotrophs." Recent findings indicate that these microorganisms comprise an "Ln-dependent ecosystem" that we have not been able to reconstruct under laboratory conditions without Lns. In this chapter, we summarize methods for (1) screening of Ln-responsive microorganisms, (2) purification of native XoxFs from Ln-dependent methylotrophs, and (3) screening of Ln-dependent methylotrophs from natural environments, while providing a history of the discovery of the Ln-dependent methylotrophs.
Assuntos
Elementos da Série dos Lantanídeos , Oxirredutases do Álcool/genética , Ecossistema , MetanolRESUMO
ELOVL fatty acid elongase 6 (ELOVL6) is a long-chain fatty acid elongase, and the hepatic expression of the Elovl6 gene and accumulation of triglycerides (TG) are enhanced by long-term high-fructose intake. Fatty acid synthesis genes, including Elovl6, are regulated by lipogenic transcription factors, sterol regulatory element-binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP). In addition, carbohydrate signals induce the expression of fatty acid synthase not only via these transcription factors but also via histone acetylation. Since a major lipotrope, myo-inositol (MI), can repress short-term high-fructose-induced fatty liver and the expression of fatty acid synthesis genes, we hypothesized that MI might influence SREBP-1c, ChREBP, and histone acetylation of Elovl6 in fatty liver induced by even short-term high-fructose intake. This study aimed to investigate whether dietary supplementation with MI affects Elovl6 expression, SREBP-1 and ChREBP binding, and acetylation of histones H3 and H4 at the Elovl6 promoter in short-term high-fructose diet-induced fatty liver in rats. Rats were fed a control diet, high-fructose diet, or high-fructose diet supplemented with 0.5% MI for 10 days. This study showed that MI supplementation reduced short-term high-fructose diet-induced hepatic expression of the Elovl6 gene, ChREBP binding, but not SREBP-1 binding, and acetylation of histones H3 and H4 at the Elovl6 promoter.
Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Elongases de Ácidos Graxos/genética , Frutose/administração & dosagem , Histonas/metabolismo , Inositol/administração & dosagem , Fígado/metabolismo , Acetilação/efeitos dos fármacos , Animais , DNA/metabolismo , Dieta , Suplementos Nutricionais , Expressão Gênica/efeitos dos fármacos , Masculino , Regiões Promotoras Genéticas , Ratos , Ratos Wistar , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismoRESUMO
This paper presents objective priors for robust Bayesian estimation against outliers based on divergences. The minimum γ-divergence estimator is well-known to work well in estimation against heavy contamination. The robust Bayesian methods by using quasi-posterior distributions based on divergences have been also proposed in recent years. In the objective Bayesian framework, the selection of default prior distributions under such quasi-posterior distributions is an important problem. In this study, we provide some properties of reference and moment matching priors under the quasi-posterior distribution based on the γ-divergence. In particular, we show that the proposed priors are approximately robust under the condition on the contamination distribution without assuming any conditions on the contamination ratio. Some simulation studies are also presented.